李航 统计学习方法 第2章 感知机

本文深入介绍了感知机模型,包括其作为线性分类器的定义,感知机学习策略,如损失函数最小化,以及感知机学习算法的原始形式和对偶形式,证明了在训练数据线性可分时的收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第2章 感知机

介绍感知机模型, 叙述感知机的学习策略, 特别是损失函数; 最后介绍感知机学习算法,包括原始形式和对偶形式, 证明算法的收敛性.

感知机模型

f(x)=sign(w⋅x+b)f(x)=sign(w\cdot x + b)f(x)=sign(wx+b)是模型函数

wwwbbb是模型参数, 分别叫权值和偏置.

感知机是判别模型.假设空间是线性分类器集合

{ f∣f(x)=w⋅x+b}\{f|f(x)=w\cdot x+b \}{ ff(x)=wx+b}

w⋅x+b=0w\cdot x + b=0wx+b=0 确定一个超平面

感知机学习策略

线性可分数据集的定义

  • 定义损失函数, 并将损失函数极小化.
  • 损失函数可以使用误分类点到超平面的总距离

损失函数的定义为L(w,b)=−∑yi(w⋅xi+b)L(w,b)=-\sum y_i(w\cdot x_i + b)L(w,b)=yi(wxi+b)

  1. 感知机学习算法

最优化方法是随机梯度下降法,包括原始形式和对偶形式, 证明在训练数据线性可分的条件下, 感知机学习算法的收敛性.

  1. 算法的原始形式

min⁡w,bL(w,b)=−∑yi(w⋅xi+b)\min\limits_{w,b}L(w, b)=-\sum y_i(w\cdot x_i + b)w,bminL(w,b)=yi(wxi+b)

感知机学习算法是误分类驱动的, 具体采用随机梯度下降法. 首先, 选一个超平面, 然后用梯度下降法不断极小化目标函数. 极小化一次随机选一个误分类点使其梯度下降.假设误分类点集合是固定的.梯度的定义

▽wL(w,b)=−∑xi∈Myixi\triangledown_w L(w, b) = -\sum\limits_{x_i\in M}y_i x_iwL(w,b)=xiMyix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值