深度学习理论与应用
摘要: 深度学习(Deep Learning)是一个近几年备受关注的研究领域,在机器学习中起着重要的作用。深度学习通过建立、模拟人脑的分层结构来实现对外部输入的数据进行从低级到高级的特征提取,从而能够解释外部数据。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。本文首先介绍了深度学习的基础知识,包括线性回归、多层感知机、卷积神经网络、循环神经网络的基本原理,在其基础上讲解网络优化算法进一步优化网络和自定义网络实现自己的网络。然后介绍深度学习的应用,具体包括单发多框目标检测、语义分割、风格迁移、中英文翻译系统。最后总结我对本课程学习的心得体会和建议。
关键词:深度学习模型;深度学习应用;自定义网络实现;优化算法
1 引言
1.1起源
早在17世纪,雅各比·伯努利(1655–1705)提出了描述只有两种结果的随机过程(如抛掷一枚硬币)的伯努利分布。大约一个世纪之后,卡尔·弗里德里希·高斯(1777–1855)发明了今日仍广泛用在从保险计算到医学诊断等领域的最小二乘法。概率论、统计学和模式识别等工具帮助自然科学的实验学家们从数据回归到自然定律,从而发现了如欧姆定律(描述电阻两端电压和流经电阻电流关系的定律)这类可以用线性模型完美表达的一系列自然法则。
现代统计学在20世纪的真正起飞要归功于数据的收集和发布。统计学巨匠之一罗纳德·费雪(1890–1962)对统计学理论和统计学在基因学中的应用功不可没。他发明的许多算法和公式,例如线性判别分析和费雪信息,仍经常被使用。即使是他在1936年发布的Iris数据集,仍然偶尔被用于演示机器学习算法。
克劳德·香农(1916–2001)的信息论以及阿兰·图灵 (1912–1954)的计算理论也对机器学习有深远影响。图灵在他著名的论文《计算机器与智能》中提出了“机器可以思考吗?”这样一个问题。在他描述的“图灵测试”中,如果一个人在使用文本交互时不能区分他的对话对象到底是人类还是机器的话,那么即可认为这台机器是有智能的。时至今日,智能机器的发展可谓日新月异。
另一个对深度学习有重大影响的领域是神经科学与心理学。既然人类显然能够展现出智能,那么对于解释并逆向工程人类智能机理的探究也在情理之中。最早的算法之一是由唐纳德·赫布(1904–1985)正式提出的。在他开创性的著作《行为的组织》中,他提出神经是通过正向强化来学习的,即赫布理论。赫布理论是感知机学习算法的原型,并成为支撑今日深度学习的随机梯度下降算法的基石:强化合意的行为、惩罚不合意的行为,最终获得优良的神经网络参数。
在最初的快速发展之后,自约1995年起至2005年,大部分机器学习研究者的视线从神经网络上移开了。这是由于多种原因。首先,训练神经网络需要极强的计算力。尽管20世纪末内存已经足够,计算力却不够充足。其次,当时使用的数据集也相对小得多。费雪在1936年发布的的Iris数据集仅有150个样本,并被广泛用于测试算法的性能。具有6万个样本的MNIST数据集在当时已经被认为是非常庞大了,尽管它如今已被认为是典型的简单数据集。由于数据和计算力的稀缺,从经验上来说,如核方法、决策树和概率图模型等统计工具更优。它们不像神经网络一样需要长时间的训练,并且在强大的理论保证下提供可以预测的结果。
互联网的崛起、价廉物美的传感器和低价的存储器令我们越来越容易获取大量数据。加之便宜的计算力,尤其是原本为电脑游戏设计的GPU的出现,上文描述的情况改变了许多。一瞬间,原本被认为不可能的算法和模型变得触手可及。
1.2优点
深度学习可以逐级表示越来越抽象的概念或模式。以图像为例,它的输入是一堆原始像素值。深度学习模型中,图像可以逐级表示为特定位置和角度的边缘、由边缘组合得出的花纹、由多种花纹进一步汇合得到的特定部位的模式等。最终,模型能够较容易根据更高级的表示完成给定的任务,如识别图像中的物体。值得一提的是,作为表征学习的一种,深度学习将自动找出每一级表示数据的合适方式。因此,深度学习的一个外在特点是端到端的训练。也就是说,并不是将单独调试的部分拼凑起来组成一个系统,而是将整个系统组建好之后一起训练。
相对其它经典的机器学习方法而言,深度学习的不同在于:对非最优解的包容、对非凸非线性优化的使用,以及勇于尝试没有被证明过的方法。这种在处理统计问题上的新经验主义吸引了大量人才的涌入,使得大量实际问题有了更好的解决方案。尽管大部分情况下需要为深度学习修改甚至重新发明已经存在数十年的工具,但是这绝对是一件非常有意义并令人兴奋的事。
1.3应用领域
深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
物体识别也经历了漫长的发展过程。在2010年从图像中识别出物体的类别仍是一个相当有挑战性的任务。当年日本电气、伊利诺伊大学香槟分校和罗格斯大学团队在ImageNet基准测试上取得了28%的前五错误率。到2017年,这个数字降低到了2.25%。研究人员在鸟类识别和皮肤癌诊断上,也取得了同样惊世骇俗的成绩。
博弈曾被认为是人类智能最后的堡垒。自使用时间差分强化学习玩双陆棋的TD-Gammon开始,算法和算力的发展催生了一系列在博弈上使用的新算法。与双陆棋不同,国际象棋有更复杂的状态空间和更多的可选动作。“深蓝”用大量的并行、专用硬件和博弈树的高效搜索打败了加里·卡斯帕罗夫。围棋因其庞大的状态空间被认为是更难的游戏,AlphaGo在2016年用结合深度学习与蒙特卡罗树采样的方法达到了人类水准。对德州扑克游戏而言,除了巨大的状态空间之外,更大的挑战是博弈的信息并不完全可见,例如看不到对手的牌。而“冷扑大师”用高效的策略体系超越了人类玩家的表现。以上的例子都体现出了先进的算法是人工智能在博弈上的表现提升的重要原因。
机器学习进步的另一个标志是自动驾驶汽车的发展。尽管距离完全的自主驾驶还有很长的路要走,但诸如Tesla、NVIDIA、 MobilEye和Waymo这样的公司发布的具有部分自主驾驶功能的产品展示出了这个领域巨大的进步。完全自主驾驶的难点在于它需要将感知、思考和规则整合在同一个系统中。目前,深度学习主要被应用在计算机视觉的部分,剩余的部分还是需要工程师们的大量调试。
以上列出的仅仅是近年来深度学习所取得的成果的冰山一角。机器人学、物流管理、计算生物学、粒子物理学和天文学近年来的发展也有一部分要归功于深度学习。可以看到,深度学习已经逐渐演变成一个工程师和科学家皆可使用的普适工具。
2 深度学习基础
2.1 线性回归
回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。
线性回归(linear regression)可以追溯到19世纪初,它在回归的各种标准工具中最简单而且最流行。线性回归基于几个简单的假设:首先,假设自变量x和因变量y之间的关系是线性的,即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声;其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。
2.1.1 数学模型
(1)考虑单个样本,当我们的输入包含d个特征时,我们将预测结果yˆ(通常使用“尖角”符号表示y的估计值)表示为:
将所有特征放到向量x∈Rd中,并将所有权重放到向量w∈Rd中,向量x对应于单个数据样本的特征,我们可以用点积形式来简洁地表达模型:
(2)考虑整个数据集,对于特征集合X,预测值yˆ∈Rn可以通过矩阵-向量乘法表示为:
线性回归模型的一个单层网络神经
线性回归数据拟合效果
2.1.3 损失函数
在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。损失函数(loss function)能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。回归问题中最常用的损失函数是平方误差函数。由于平方误差函数中的二次方项,估计值yˆ(i)和观测值y(i)之间较大的差异将导致更大的损失。为了度量模型在整个数据集上的质量,我们需计算在训练集n个样本上的损失均值(也等价于求和)。MSE均方差损失函数(L2损失函数)表示如下:
在训练模型时,我们希望寻找一组参数(w∗,b∗),这组参数能最小化在所有训练样本上的总损失。线性回归问题的形式化表示:
2.1.4 训练和预测
线性回归整个算法训练流程:
• 初始化参数
• 重复以下训练,直到完成
– 计算梯度g ← ∂(w,b)
– 更新参数(w, b) ← (w, b) − ηg
2.1.5 优缺点
优点:
①善于获取数据集中的线性关系;
②适用于在已有了一些预先定义好的变量并且需要一个简单的预测模型的情况下使用;
③训练速度和预测速度较快;
④在小数据集上表现很好;
⑤结果可解释,并且易于说明;
⑥当新增数据时,易于更新模型;
⑦不需要进行参数调整(正则化线