如何使用大模型api提升代码编写效率和科研效率?

在CherryStudio中使用

在官网下载客户端 客户端下载 | CherryStudio

第一步打开CherryStudio的设置界面,选择openai。输入令牌的key,api地址填写:xxx.com

image-20250210185417245

第二步点击添加自定义模型,添加对应需要的模型名字

image-20250210185603824

image-20250210185706892

第三步,点击对话上方选择模型,选择我们刚才添加的,然后就可以对话了

image-20250210185810781

在 Chatbox 中使用

访问 https://web.chatboxai.app/(国内稳定访问)或点击侧边栏 聊天

进入页面后在设置页面勾选自定义接口,模型服务商选择 openai,并将接口地址更改为 xxx.com, API Key 填写上述创建的 API Key。

image-20250209142234746

image-20250209142322000

然后点击新的聊天之间使用即可,模型可点击输入框上方切换。

image-20250209142434965

在AnythingLLM中使用

打开官网AnythingLLM | The all-in-one AI application for everyone下载安装AnythingLLM

安装完成后打开设置

左侧选择LLM首选项,选择generic openai。填写base_url :xxx.com

api key在大模型网站中申请,复制到这里

上下文token和最大输出token可以根据自己需求修改。

image-20250212114109064

在Cline中使用

打开vscode,点击插件搜索Cline

打开Cline的设置,选择按照下图所示填写,key填写自己在令牌中复制的

base_url填写为:xxx.com/v1

模型名称:deepseek-reasoner对应DeepSeek-R1模型,deepseek-chat对应DeepSeek-V3模型

image-20250210185019281

在CodeGPT中使用

打开Pycharm,点击插件搜索CodeGPT

打开CodeGPT的设置,选择customer openai 选择按照下图所示填写,key填写自己在令牌中复制的

url填写为:xxx.com/v1/chat/completions

选择body,填写要调用的模型名称。根据需求填写max_token

模型名称:deepseek-reasoner对应DeepSeek-R1模型,deepseek-chat对应DeepSeek-V3模型

image-20250211175913188

image-20250211175918913

在Cursor中使用

打开Cursor设置,在openai key下方输入网站令牌中的key,base_url为 xxx.com/v1

image-20250210190245028

添加模型,输入模型名称。找到对应需要的模型名字,填入,即可使用。

image-20250210190417289

在沉浸式翻译中使用

沉浸式翻译 https://immersivetranslate.com/

一款免费的,好用的,没有废话的,革命性的,饱受赞誉的,AI 驱动的双语网页翻译扩展,你可以完全免费地使用它来实时翻译外语网页,PDF 文档,ePub 电子书,字幕文件等。

在基本设置中翻译服务选择 openai,勾选自定义 API Key,API Key 填写创建的令牌,模型建议选择 gpt-3.5 系列,自定义 API 地址填写 xxx.com/v1/chat/completions

image-20250209142632916

image-20250209142649269

在 LangChain 中使用

最简单的就是:直接设置环境变量代码如下

API_SECRET_KEY = "sk-pvMtoVO******66249058b93C766F2D70167" # 你创建的令牌
BASE_URL = "https://api.aigpt4.top/v1"; 

os.environ["OPENAI_API_KEY"] = API_SECRET_KEY
os.environ["OPENAI_BASE_URL"] = BASE_URL

注意:openai_api_base 的末尾要加上 /v1,

llm = ChatOpenAI(
    openai_api_base="https://api.aigpt4.top/v1", # 注意,末尾要加 /v1
    openai_api_key="sk-3133f******fee269b71d",
)

res = llm.predict("hello")

print(res)

示例代码,使用 LLM 进行预测

import requests
import time
import json
import time

from langchain.llms import OpenAI

API_SECRET_KEY = "创建的令牌";
BASE_URL = "https://api.aigpt4.top/v1";

def text():
    llm = OpenAI(temperature=0.9)
    text = "What would be a good company name for a company that makes colorful socks?"
    print(llm(text))

if __name__ == '__main__':
    text();

在官方 openai 库中使用

其他的方式和官方是一样的,只是改一个 base_URL 和 key ;具体 API 调用方法请查看官方文档即可。

from openai import OpenAI

client = OpenAI(
    # 将这里换成你创建的令牌
    api_key="sk-xxx",
    # 这里将官方的接口访问地址,替换成 api的接口地址
    base_url="https://api.aigpt4.top/v1"
)

chat_completion = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "Say this is a test",
        }
    ],
    model="gpt-3.5-turbo",
)

print(chat_completion)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三水编程

感谢客官打赏~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值