25、三维旋转公式


在这里插入图片描述

正文

三维旋转矩阵用于表示三维空间中的旋转。在三维空间中,旋转可以围绕三个坐标轴(x轴、y轴、z轴)进行。每个轴的旋转都可以用一个特定的旋转矩阵来表示。以下是三个基本的三维旋转矩阵:

这里角度都是逆时针旋转。
在这里插入图片描述

1. 绕x轴旋转(Roll)

绕x轴旋转角度 (θ) 的旋转矩阵 (Rx(θ)) 是:
在这里插入图片描述

2. 绕y轴旋转(Pitch)

绕y轴旋转角度 (θ) 的旋转矩阵 (Ry(θ)) 是:
在这里插入图片描述
这里,注意一下,为什么绕y轴旋转时,矩阵有些不一样。这是因为,绕y轴逆时针旋转的时候,旋转方向是z–>x。

z = cosαz - sinαx
x = sinαz + cosαx

3. 绕z轴旋转(Yaw)

绕z轴旋转角度 (θ) 的旋转矩阵 (Rz(θ)) 是:
在这里插入图片描述

组合旋转

在三维空间中,任意的旋转可以通过这三个基本旋转的组合来实现。例如,一个常见的旋转顺序是先绕z轴旋转,然后绕y轴旋转,最后绕x轴旋转(即ZYX顺序)。这种组合可以表示为:
在这里插入图片描述
其中,(α)、(β) 和 (γ) 分别是绕x轴、y轴和z轴的旋转角度。

旋转矩阵的性质

  • 正交性:
    旋转矩阵是正交矩阵,即 (RT R = I,其中 (RT) 是 ® 的转置,(I) 是单位矩阵。
  • 行列式:
    旋转矩阵的行列式为1,这表明旋转不改变体积。
  • 逆矩阵:
    旋转矩阵的逆矩阵是其转置,即 (R-1 = RT)。

三维旋转矩阵在计算机图形学、机器人学、航空航天等领域中有着广泛的应用,用于描述和实现三维空间中的旋转变换。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值