
正文
三维旋转矩阵用于表示三维空间中的旋转。在三维空间中,旋转可以围绕三个坐标轴(x轴、y轴、z轴)进行。每个轴的旋转都可以用一个特定的旋转矩阵来表示。以下是三个基本的三维旋转矩阵:
这里角度都是逆时针旋转。
1. 绕x轴旋转(Roll)
绕x轴旋转角度 (θ) 的旋转矩阵 (Rx(θ)) 是:
2. 绕y轴旋转(Pitch)
绕y轴旋转角度 (θ) 的旋转矩阵 (Ry(θ)) 是:
这里,注意一下,为什么绕y轴旋转时,矩阵有些不一样。这是因为,绕y轴逆时针旋转的时候,旋转方向是z–>x。
z = cosαz - sinαx
x = sinαz + cosαx
3. 绕z轴旋转(Yaw)
绕z轴旋转角度 (θ) 的旋转矩阵 (Rz(θ)) 是:
组合旋转
在三维空间中,任意的旋转可以通过这三个基本旋转的组合来实现。例如,一个常见的旋转顺序是先绕z轴旋转,然后绕y轴旋转,最后绕x轴旋转(即ZYX顺序)。这种组合可以表示为:
其中,(α)、(β) 和 (γ) 分别是绕x轴、y轴和z轴的旋转角度。
旋转矩阵的性质
- 正交性:
旋转矩阵是正交矩阵,即 (RT R = I,其中 (RT) 是 ® 的转置,(I) 是单位矩阵。 - 行列式:
旋转矩阵的行列式为1,这表明旋转不改变体积。 - 逆矩阵:
旋转矩阵的逆矩阵是其转置,即 (R-1 = RT)。
三维旋转矩阵在计算机图形学、机器人学、航空航天等领域中有着广泛的应用,用于描述和实现三维空间中的旋转变换。