一、定义
矩阵的偏迹运算是量子力学中的一种特殊的运算,它是一种特殊的矩阵迹运算。只不过这种取迹的过程并不是对全空间展开的,而是对某一个子空间。
如果有两个希尔伯特空间分别记为HAH_{A}HA和HBH_{B}HB,它们可以分别用来表示两个量子系统A和B,那么就能对这两个空间做直积运算,从而得到系统A与B的复合系统,记为:HA,B=HA⨂HBH_{A, B}=H_{A} \bigotimes H_{B}HA,B=HA⨂HB
设空间HA,BH_{A, B}HA,B中的密度矩阵为ρA,B\rho_{A, B}ρA,B。再设{wi∣i=1,2,…,NB}\left\{w_{i} | i=1,2, \ldots, N_{B}\right\}{wi∣i=1,2,…,NB}为空间HBH_{B}HB的一组基矢,其中NBN_{B}NB为空间HBH_{B}HB的维度,那么定义ρA,B\rho_{A, B}ρA,B对子系统B求偏迹为:
ρA=TrB(ρA,B)=∑i=1NB⟨wi∣ρA,B∣wi⟩\rho_{A}=\operatorname{Tr}_{B}\left(\rho_{A, B}\right)=\sum_{i=1}^{N_{B}}\left\langle w_{i}\left|\rho_{A, B}\right| w_{i}\right\rangleρA=TrB(ρA,B)=∑i=1NB⟨wi∣ρA,B∣wi⟩
上式是按照狄拉克记号写的。其中⟨wi∣ρA,B∣wi⟩\left\langle w_{i}\left|\rho_{A, B}\right| w_{i}\right\rangle⟨wi∣ρA,B∣wi⟩表示PA,BP_{A, B}PA,B与wi做内积。但是,PA,BP_{A, B}PA,B是复合希尔伯特空间HA,BH_{A, B}HA,B中的矩阵,而wiw_iwi是空间HBH_BHB中的变量,所以这两者做内积就比较特殊。