
原理概念
文章平均质量分 94
总结数据挖掘、机器学习、AI相关的原理概念
莫比乌斯@卷
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【CRF系列】第10篇:总结:CRF学习路径图与核心要点
模型类型归一化特征灵活性标签偏置结构化输出自动特征HMM生成式局部有限不易出现是否MEMM判别式局部灵活是是否CRF (传统)判别式全局灵活否是否判别式局部(自动)否否是BiLSTM-CRF判别式全局(自动)否是是BERT-CRF判别式全局(自动+预训练)否是是补充说明:类型:生成式模型建模联合分布PXYP(X,Y)PXY,判别式模型直接建模条件概率PY∣XP(Y|X)PY∣X。归一化。原创 2025-04-18 09:00:00 · 862 阅读 · 0 评论 -
【CRF系列】第9篇:CRF的扩展与前沿探讨
模型扩展:高阶CRF、半马尔可夫CRF和隐变量CRF等扩展形式增强了CRF的表达能力,使其能够处理更复杂的序列建模问题。跨领域应用:CRF不仅在NLP中有广泛应用,在计算机视觉、生物信息学等领域也发挥重要作用,展示了其作为结构化预测框架的通用性。与深度学习的结合:CRF与预训练语言模型的结合代表了序列标注的最新发展方向,结合了两者的优势,取得了显著的性能提升。条件随机场从提出至今已有近二十年的历史,期间经历了从纯统计模型到与深度学习结合的演变。原创 2025-04-17 14:00:00 · 858 阅读 · 0 评论 -
【CRF系列】第8篇:CRF与深度学习的融合:BiLSTM-CRF模型
自动特征提取:无需手动设计特征函数,BiLSTM能自动学习有效的特征表示端到端训练:整个模型可以联合优化,不需要分阶段训练全局最优解码:CRF层确保考虑整个序列的标签依赖关系约束建模:可以有效避免输出不合法的标签序列更好的性能:在多数序列标注任务上,BiLSTM-CRF比单独使用BiLSTM或CRF效果更好任务模型F1分数英文NER (CoNLL-2003)BiLSTM88.5%英文NER (CoNLL-2003)BiLSTM-CRF90.9%中文分词 (MSRA)原创 2025-04-17 09:00:00 · 1031 阅读 · 0 评论 -
【CRF系列】第7篇:CRF实战——经典工具与Python库应用
CRF++高效:C++实现,运行速度快,支持多线程训练灵活:通过模板文件灵活定义特征稳定:广泛用于学术研究和工业应用资源占用:对大规模数据集有良好支持crf_learn(训练模型)和crf_test(测试模型)。是一个Python库,它封装了CRFsuite,并提供了类似scikit-learn的API,使得在Python中使用CRF变得简单而直观。Python友好:完全的Python接口,无需命令行操作scikit-learn兼容:符合scikit-learn的API设计,易于集成到现有流程。原创 2025-04-16 14:00:00 · 655 阅读 · 0 评论 -
【CRF系列】第6篇:CRF的预测:维特比(Viterbi)解码详解
在CRF中,预测问题可以形式化为:给定观测序列Xx1x2xnXx1x2...xn和模型参数θ\thetaθ,找到使条件概率PY∣X;θP(Y|X;θ最大的标签序列Y∗y1∗y2∗yn∗Y∗y1∗y2∗...yn∗。θY∗。原创 2025-04-16 09:00:00 · 655 阅读 · 0 评论 -
【CRF系列】第5篇:CRF的学习:参数估计与优化算法
学习目标:最大化带正则化的条件对数似然函数。梯度计算:涉及特征函数在训练数据上的经验期望和在模型下的期望。前向-后向算法:高效计算归一化因子和特征期望,避免指数级的计算复杂度。优化算法:从简单的梯度下降到高效的L-BFGS,帮助我们找到最优参数。CRF的训练涉及复杂的数学运算和算法,但通过本文的解析,希望它们变得更加清晰易懂。理解这些过程不仅有助于深入掌握CRF原理,也能帮助我们更好地使用和调优CRF模型。原创 2025-04-15 14:00:00 · 673 阅读 · 0 评论 -
【CRF系列】第4篇:CRF的核心:特征函数设计与模板
本文深入探讨了CRF的核心——特征函数设计。特征函数的重要性及其在CRF中的核心地位常见的特征模板类型,从单词本身到词缀、词形和外部知识CRF++模板机制的工作原理,如何用简洁的语法生成大量特征函数特征选择的策略和防止过拟合的方法好的特征设计是CRF成功的关键。它不仅需要技术知识,还需要对任务领域的深入理解和不断的实验优化。原创 2025-04-15 09:00:00 · 1012 阅读 · 0 评论 -
【CRF系列】第3篇:线性链CRF详解——模型定义与参数化
线性链CRF每个观测变量xix_ixi都与对应位置的标签变量yiy_iyi相连相邻的标签变量yi−1y_{i-1}yi−1和yiy_iyi之间有边相连图示结构如下:它保留了标签之间的相邻依赖关系(如:B-PER后面更可能是I-PER)每个标签可以利用整个观测序列的信息它的结构简单,计算效率较高。原创 2025-04-14 14:00:00 · 677 阅读 · 0 评论 -
【CRF系列】第2篇:概率图模型基础——理解CRF的基石:马尔可夫随机场
*马尔可夫随机场(MRF)**是一类用无向图表示变量联合概率分布的模型。在MRF中,节点代表随机变量,边表示变量间的相互依赖关系。一个变量的概率分布只与它的邻居有关,与其他变量条件独立。这就是著名的马尔可夫性质。举个实际的例子:在一张图片中,一个像素的颜色通常与它周围的像素颜色相关,而与远处的像素几乎无关。这种局部依赖关系,正是马尔可夫随机场所擅长建模的!概率图模型用图来表示随机变量之间的依赖关系有向图模型适合表示因果关系,无向图模型适合表示相互作用马尔可夫随机场。原创 2025-04-14 09:00:00 · 2097 阅读 · 0 评论 -
【CRF系列】第1篇:开启序列标注之门——为啥需要CRF?
这篇文章是咱们探索CRF的第一步。我们了解了序列标注任务,回顾了经典模型HMM,知道它观测独立性假设存在局限,也探讨了MEMM是怎么通过引入丰富特征改进的,但却陷入了标签偏置的麻烦。最后,引出了CRF,重点讲了它的全局归一化机制,这个机制巧妙地解决了标签偏置问题,还保留了判别式模型特征灵活的优点。可以这么理解它们的发展过程:HMM -> MEMM (解决观测独立性,带来标签偏置) -> CRF (保留特征灵活性,解决标签偏置)CRF因为建模能力强、性能好,已经成了序列标注领域的标准模型之一。原创 2025-04-13 14:00:00 · 1136 阅读 · 0 评论 -
【SVM07】SVM的哲学、局限与前沿
支持向量机(SVM)无疑是机器学习发展史上的一个里程碑。它基于优美的统计学习理论,通过最大化间隔和核技巧,巧妙地平衡了模型的复杂度和经验风险,为解决线性和非线性分类、回归问题提供了一个强大而优雅的框架。尽管面临计算复杂性、参数敏感性和可解释性等方面的挑战,并且在某些超大规模和特定模态(如图像)的任务上,深度学习显示出更强的能力,但SVM凭借其理论深度、在特定数据类型上的优异表现以及与其他技术的融合潜力,在今天及可预见的未来,仍将在机器学习工具箱中占据重要的一席之地。原创 2025-04-13 09:00:00 · 892 阅读 · 0 评论 -
【SVM06】SVM实战——从理论到应用
加载数据数据预处理: 划分训练/测试集,特征缩放(极其重要!初步模型训练: 尝试不同核函数,了解基线性能。超参数调优: 使用网格搜索 (Grid Search)和交叉验证 (Cross-Validation)) 寻找最佳参数组合。最终评估: 使用找到的最佳模型在测试集上评估泛化性能(准确率、分类报告、混淆矩阵)。这个流程是机器学习项目中的一个标准范式,不仅适用于SVM,也适用于许多其他算法。关键在于理解每一步的目的以及如何使用工具(如)来高效地完成它们。原创 2025-04-12 14:00:00 · 672 阅读 · 0 评论 -
【SVM05】支持向量机的扩展话题
除了OvR和OvO,还有一些直接构建多分类SVM的方法,如提出的方法,它试图在一个统一的优化问题中直接找到所有KKK个类别的决策边界。这种方法理论上更优,但求解更复杂,实践中OvR和OvO仍然非常流行。多分类: 通过 OvR 或 OvO 策略将二分类器组合用于多类任务。回归 (SVR): 引入ϵ\epsilonϵ-不敏感带,将最大间隔思想应用于预测连续值。概率输出: 使用 Platt Scaling 或 Isotonic Regression 将SVM决策值转换为概率估计。实践技巧。原创 2025-04-12 09:00:00 · 1011 阅读 · 0 评论 -
【SVM04】SVM的求解算法——SMO(含Python简化实现)
前几篇我们推导出了SVM的对偶优化问题,它是一个带约束的二次规划问题。虽然通用QP求解器能解决,但在大数据集上效率低下。为了高效求解,尤其是大规模场景,John Platt提出了序列最小最优化 (Sequential Minimal Optimization, SMO) 算法。maxαW(α)=∑i=1mαi−12∑i=1m∑j=1mαiαjyiyjK(xi,xj) \max_{\alpha} W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{原创 2025-04-11 14:00:00 · 1019 阅读 · 0 评论 -
【SVM03】核技巧(Kernel Trick)——SVM的非线性魔法
核技巧是SVM从线性分类器跃升为强大的非线性分类器的关键。它通过核函数巧妙地在低维空间进行计算,却实现了在高维(甚至无限维)特征空间中寻找线性超平面的效果,极大地扩展了SVM的应用范围。核心思想:隐式映射到高维空间。关键工具:核函数 (K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j))。常用核:线性核、多项式核、高斯核(RBF)。实现:替换对偶问题和决策函数中的内积。我们现在理解了SVM如何处理线性和非线性问题。原创 2025-04-11 09:00:00 · 720 阅读 · 0 评论 -
【SVM精讲02】线性不可分与软间隔SVM
硬间隔SVM在面对噪声和线性不可分数据时的局限性。软间隔SVM通过引入松弛变量 (\xi_i)来允许一定程度的“犯规”。新的优化目标是在最大化间隔和最小化总松弛量之间取得平衡。正则化参数 (C)控制了这个平衡,是模型复杂度和泛化能力的关键调节器。软间隔SVM的支持向量包含了间隔边界上、间隔内部以及被误分类的点。对偶问题中 (\alpha_i) 的约束变为 (0 \le \alpha_i \le C)。线性(软间隔)SVM能够处理近似线性可分的数据。但是,如果数据的决策边界本身就是非线性。原创 2025-04-09 09:00:00 · 593 阅读 · 0 评论 -
【SVM精讲01】SVM基础——从线性可分到最大间隔分类器
线性可分数据集下寻找最优分类超平面的问题。函数间隔和几何间隔的概念,以及为何选择最大化几何间隔。将最大间隔问题转化为一个带约束的凸二次优化问题。初步了解了拉格朗日对偶性和支持向量(决定超平面的关键点)的概念。通过实现了一个简单的线性SVM可视化。然而,现实世界的数据往往不是完美线性可分的,可能存在噪声、异常点,或者本身就需要非线性的边界。如何处理这些更复杂的情况?这就是我们下一篇将要讨论的软间隔SVM和核技巧。原创 2025-04-08 14:00:00 · 1175 阅读 · 0 评论 -
【决策树算法精讲第08篇】决策树的应用局限与集成学习过渡
决策树的独特价值:决策树作为一种典型的白盒模型,具有极高的可解释性。在一些对决策过程透明度要求极高的场景,如金融风控的监管合规、医疗诊断的辅助决策等领域,决策树能够清晰地展示从输入特征到输出结果的推理过程,这是许多其他模型所无法比拟的优势,使其成为这些场景下的标杆模型。集成学习的突破与主流地位:虽然单棵决策树存在诸如不稳定性、对复杂线性关系建模困难等局限性,但通过集成学习,如随机森林和GBDT等方法,能够有效地组合多棵决策树的预测结果,突破单棵树的能力边界。原创 2025-04-08 09:00:00 · 2141 阅读 · 0 评论 -
【决策树算法精讲第07篇】实战进阶——手写决策树与sklearn源码解析
在实现决策树之前,我们首先需要定义决策树的节点结构,这是构建决策树的基础。# 分裂特征索引,用于记录该节点是根据哪个特征进行分裂的# 分裂阈值,在C4.5和CART算法中会用到,用于判断样本属于左子树还是右子树# 叶节点预测值,如果该节点是叶节点,则存储该节点的预测结果# 左子树节点,指向该节点的左子树# 右子树节点,指向该节点的右子树# 判断该节点是否为叶节点,如果value不为None,则表示该节点是叶节点这个TreeNode类定义了决策树节点的基本属性。原创 2025-04-07 14:00:00 · 952 阅读 · 0 评论 -
【决策树算法精讲第06篇】决策树剪枝——解决过拟合的关键
预剪枝:预剪枝通过在决策树构建过程中提前终止分裂,有效地防止了过拟合现象的发生。然而,由于其过早地限制了树的生长,可能会导致模型无法充分学习到数据中的复杂模式,从而出现欠拟合的情况。后剪枝:后剪枝则是在决策树构建完成后,通过对已生成的树进行重构来平衡模型的复杂度与误差。它能够更全面地考虑树的整体结构和性能,避免了预剪枝可能出现的欠拟合问题,但计算成本相对较高。CCP剪枝:CCP剪枝作为CART的官方后剪枝方法,通过引入复杂度系数(\alpha)来平衡预测误差和树的复杂度。原创 2025-04-07 09:00:00 · 2106 阅读 · 0 评论 -
【决策树算法精讲第05篇】CART算法——基尼指数与回归树
基尼指数作为CART分类树特征选择的核心准则,主要用于衡量数据集的纯度。从直观层面理解,它代表了从数据集中随机抽取两个样本,其类别不一致的概率。用数学公式表达如下:在这个公式里,(K)表示数据集的类别总数,(P(Y=y_k))表示样本属于第(k)类别的概率。从公式可以看出,基尼指数越小,意味着数据集中样本的类别分布越集中,即数据集的纯度越高。原创 2025-04-02 09:00:00 · 1445 阅读 · 0 评论 -
【决策树算法精讲第04篇】C4.5算法:增益率与工程改进
信息增益率是C4.5算法的核心改进之一,它的引入主要是为了解决ID3算法对多值特征的偏好问题。信息增益率的数学定义如下:其中,(\text{Gain}(Y,X)) 是我们之前提到的信息增益,它衡量了特征 (X) 对分类目标 (Y) 的贡献程度;(H(X)) 是特征 (X) 的熵,用于惩罚取值数较多的特征,其计算公式为:这里的 (n) 是特征 (X) 的取值个数,(P(X=x_i)) 是特征 (X) 取第 (i) 个值的概率。增益率解决偏差问题。原创 2025-04-01 15:00:00 · 887 阅读 · 0 评论 -
【决策树算法精讲第03篇】特征选择:信息增益与ID3算法
信息增益在决策树的特征选择中扮演着核心角色,它主要用于衡量特征(X)对分类目标(Y)的贡献程度。其数学定义如下:在这个公式里,(H(Y))代表目标变量(Y)的熵,它反映了在分裂之前目标变量的不确定性程度。熵值越大,意味着目标变量的不确定性越高;反之,熵值越小,则表示目标变量越趋于确定。而(H(Y|X))被称为条件熵,它表示在已知特征(X)的条件下,目标变量(Y)的平均不确定性。通过计算两者的差值,即信息增益,我们能够清晰地了解到引入特征(X)后,目标变量(Y)的不确定性降低了多少。原创 2025-04-01 09:00:00 · 1594 阅读 · 0 评论 -
【决策树算法精讲第02篇】数学基础回顾——概率与信息论
概念公式熵条件熵( H(Y信息增益信息增益率为了更好地理解和运用这些公式,我们需要明确每个公式的含义和作用。熵衡量的是目标变量的不确定性;条件熵表示在已知某个特征条件下目标变量的不确定性;信息增益通过两者的差值,反映了某个特征对降低目标变量不确定性的贡献程度;而信息增益率则是对信息增益进行归一化,以解决信息增益在特征选择时对多值特征的偏好问题。熵作为信息论中的重要概念,有效地量化了目标变量的不确定性。熵值越大,目标变量的不确定性越高;熵值越小,目标变量越趋于确定。原创 2025-03-31 14:00:00 · 1022 阅读 · 0 评论 -
【决策树算法精讲第01篇】决策树基础概念与人类决策模拟
在本篇中,我们全面而深入地探讨了决策树的核心概念、结构组成以及它与人类决策过程的紧密联系。决策树通过其独特的树形结构和规则链,将复杂的决策过程简化为直观的可视化表示,让我们能够清晰地理解数据是如何被处理和分类的。然而,正如任何模型一样,决策树也并非完美无缺,它面临着过拟合、不稳定性以及对线性关系不敏感等问题。在后续的文章中,我们将进一步深入挖掘决策树的内部机制,重点讨论如何选择分裂特征(如信息增益、基尼指数等方法)以及如何优化树结构(如剪枝算法),以提高决策树的性能和泛化能力。原创 2025-03-31 09:00:00 · 779 阅读 · 0 评论 -
【聚类算法解析系列10】前沿方向——聚类算法的未来在哪里?
对比学习(Contrastive Learning)通过数据增强生成正负样本对,使模型无需标签即可学习通用特征。:Concept Activation Vectors (CAVs) 量化抽象概念对聚类的影响。:扩散模型(Diffusion Model)生成高质量样本,解决小样本聚类难题。其中( W_i, W_t, W_b )为可学习投影矩阵。:跨模态用户分群使GMV提升18%,点击率提升23%原创 2025-03-28 14:00:00 · 633 阅读 · 0 评论 -
【聚类算法解析系列09】聚类算法的陷阱与解决方案
聚类算法的陷阱与解决方案原创 2025-03-28 09:00:00 · 2025 阅读 · 0 评论 -
【聚类算法解析系列 08】大规模数据聚类——分布式算法与工程优化
在大规模数据聚类中,我们需要在分布式与近似算法之间找到平衡。对于十亿级数据,Spark 分布式方案是首选;而对于百万级数据,Mini - Batch 等近似算法可以在保证一定精度的前提下提高效率。在成本控制方面,集群规模与训练耗时呈现平方反比关系,即增加 10 倍节点可以将耗时缩短至原来的 1/10。若数据分片不均匀(某些分片样本量极少),如何避免质心更新偏差?我们可以考虑对样本量少的分片进行数据扩充,或者调整质心更新的权重,使其更合理地反映数据的分布情况。原创 2025-03-27 14:00:00 · 1427 阅读 · 0 评论 -
【聚类算法解析系列07】聚类与深度学习的结合——深度嵌入聚类(DEC)
数据本质是连续流形上的概率分布,而非离散样本点的集合——这正暗合了爱因斯坦"场论"对经典力学的超越。在20量子位系统中,MNIST分类准确率达85%,耗时仅经典DEC的1/1000。其中系数比( \alpha:\beta:\gamma )决定优化轨迹的相变路径。:BraTS 2023脑肿瘤数据集(3D MRI,4模态)在100家医院联合训练中,模型AUC提升12%,数据不出域。在8xA100集群上,训练速度提升6.8倍。模型体积缩小至1/4,推理延迟降低至8ms。原创 2025-03-27 09:00:00 · 1322 阅读 · 0 评论 -
【聚类算法解析系列06】进阶聚类算法——谱聚类与Mean Shift
当Facebook分析30亿用户的社交网络时,当达芬奇手术机器人分割肿瘤组织时,当Waymo自动驾驶汽车识别路障时——:将数据转换为图结构,通过谱分解(Spectral Decomposition)捕捉数据流形的低频振动模式。数据本质是连通的图,而非孤立的点——爱因斯坦"场论"在ML的再现。在512维数据上,特征分解速度提升1000倍。原创 2025-03-26 14:00:00 · 1627 阅读 · 0 评论 -
【聚类算法解析系列05】聚类效果评估——如何量化“好”的聚类?
当腾讯健康用聚类算法分割CT影像病灶时,当Visa用异常检测拦截信用卡欺诈时,评估指标就是AI系统的"质检仪"。通过5个工业级案例、12个数学公式推导和8种工程实践技巧,构建评估指标的全维认知体系。某半导体厂用改良DBI优化晶圆缺陷聚类,误检率从12%降至3.5%在ImageNet特征聚类中,NMI从0.62提升至0.79。通过动态评估模型,骑手调度效率提升19%原创 2025-03-26 09:00:00 · 707 阅读 · 0 评论 -
【聚类算法解析系列04】聚类算法实战——客户分群与图像压缩
当阿里巴巴用K-Means将8亿用户划分为3000个精细群体时,当Instagram用颜色压缩技术将图片存储成本降低60%时,聚类算法完成了从数学公式到商业价值的惊险一跃。本文将通过两大工业级案例,揭示K-Means在用户运营与图像工程中的魔鬼细节,带您掌握算法落地的全链路技巧。原创 2025-03-25 14:00:00 · 885 阅读 · 0 评论 -
聚类算法解析系列03】经典聚类算法(下)——DBSCAN与高斯混合模型
本文将深入这两种算法的数学本质,通过工业级案例与前沿应用,揭示它们如何破解非凸分布、重叠簇、动态噪声等世纪难题。原创 2025-03-25 09:00:00 · 1078 阅读 · 0 评论 -
【聚类算法解析系列02】经典聚类算法(上)——K-Means与层次聚类
K-Means与层次聚类,这两个诞生于1960年代的算法,至今仍是工业界使用率最高的聚类工具。{\mathbf{x}_i \in C_k} \mathbf{x}_i ) 是簇中心。准确区分良性(簇1)、原位癌(簇2)、转移灶(簇3),AUC达0.92。通过简单规则迭代逼近最优解,印证了"复杂源于简单"的混沌理论。在社交网络数据上,社区发现F1-score达到0.91。树状结构揭示的数据层次关系,启发了知识图谱的构建方法。在CIFAR-100数据集上,分类准确率提升12%。其中,( \mathbf{\mu}原创 2025-03-24 14:00:00 · 2380 阅读 · 0 评论 -
【聚类算法解析系列01】聚类算法入门——无监督学习的核心任务
当人类还在用肉眼观察商品关联时,算法已在384维特征空间中捕捉到"婴儿尿布与啤酒"的经典关联——这种超越直觉的洞察力,正是无监督学习的魔力所在。d_{\text{std}} = \sqrt{\left(\frac{\text{面积}-\mu_s}{\sigma_s}\right)^2 + \left(\frac{\text{卧室}-\mu_b}{\sigma_b}\right)^2}在下篇中,我们将深入K-Means的数学本质,解析那个让无数数据科学家又爱又恨的"肘部曲线"之谜。原创 2025-03-24 09:00:00 · 2617 阅读 · 1 评论 -
【回归算法解析系列15】回归算法对比与总结
核心洞见传统线性模型仍是可解释性场景的首选树模型在表格数据中保持性价比优势深度学习推动跨模态回归革命(图→值,视频→指标)原创 2025-03-21 14:00:00 · 1799 阅读 · 0 评论 -
【回归算法解析系列14】时间序列回归(ARIMA, Prophet)
ARIMA模型在处理单变量平稳时间序列数据方面表现出色,能够通过自回归、差分和移动平均的组合,有效地捕捉数据中的规律。然而,其对数据的平稳性要求严格,且在处理复杂的季节性和外生变量时相对复杂,需要人工进行较多的参数设定和处理。Prophet模型则擅长处理具有复杂季节模式的数据,能够自动检测和适应多种季节性特征,并且原生支持节假日效应和外生变量的纳入。其自动化程度高,在商业预测等领域具有明显优势,能够快速且较为准确地对具有复杂时间特征的数据进行建模和预测。原创 2025-03-21 09:00:00 · 1157 阅读 · 0 评论 -
【回归算法解析系列13】神经网络回归(Neural Network Regression)
核心结论神经网络通过层次非线性变换解决复杂回归问题。注意力机制提升时序/空间数据建模能力。自编码器在特征提取与降维回归中表现优异。下一篇:《时间序列回归:趋势与季节的博弈》ARIMA模型的差分与参数选择Prophet的节假日效应建模深度学习时序预测(LSTM, TCN)原创 2025-03-20 14:00:00 · 1984 阅读 · 0 评论 -
【回归算法解析系列12】分位数回归(Quantile Regression)
分位数回归凭借其独特的非对称损失函数,为我们揭示了变量关系的分布特征,使我们能够从全分布视角理解数据。在风险管理和费用预测等场景中,分位数回归具有传统回归方法不可替代的价值。同时,通过将分位数回归与神经网络相结合,能够有效处理高维非线性问题,进一步拓展了其应用范围。原创 2025-03-20 09:00:00 · 1914 阅读 · 0 评论 -
【回归算法解析系列11】贝叶斯回归(Bayesian Regression)
贝叶斯回归通过概率建模的方式量化不确定性,在小样本和动态场景中表现出色。MCMC和变分推断作为近似后验的两大主流方法,各有其优缺点和适用场景。预测区间的提供为风险评估提供了直观的支持,使我们能够更全面地理解模型的预测结果。原创 2025-03-19 14:00:00 · 1298 阅读 · 0 评论