
深度学习
文章平均质量分 83
发呆小天才O.o
努力努力再努力
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度可分离卷积与普通卷积的区别及原理
深度可分离卷积(Depthwise Separable Convolution)是一种轻量级的卷积神经网络操作,它将标准卷积操作分解为两个步骤:深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)。这种分解可以显著减少计算量和模型参数数量,同时在许多情况下能够保持较好的性能。原创 2025-04-21 09:49:21 · 799 阅读 · 0 评论 -
深度学习——神经网络中前向传播、反向传播与梯度下降原理
神经网络的前向传播是从输入层开始,按照网络结构依次将数据通过各隐藏层进行计算传递,最终在输出层得到预测结果的过程,是信息正向流动、逐步转换输出的阶段。反向传播基于前向传播得到的输出与真实标签的误差,从输出层反向将误差逐步分摊到各隐藏层及输入层的神经元上,以此来更新网络的权重参数,从而不断优化神经网络的性能。原创 2024-12-24 16:22:18 · 6393 阅读 · 0 评论 -
深度学习——模型过拟合和欠拟合的原因及解决方法
过拟合是指模型在训练数据上表现非常好,但在测试数据或新的数据上表现很差的现象。模型过度地学习了训练数据中的细节和噪声,以至于它无法很好地泛化到未见过的数据。例如,在一个图像分类任务中,过拟合的模型可能对训练集中的每一张图像的特定细节(如某张猫图片背景中的一个小污点)都学习得过于精细,以至于在测试集中,只要图像背景稍有不同,就无法正确分类。原创 2024-12-20 10:18:08 · 4428 阅读 · 0 评论 -
深度学习——激活函数的原理与应用
激活函数(Activation Function)在深度学习中起着至关重要的作用,它能为神经网络引入非线性因素,使得神经网络可以拟合各种复杂的非线性关系。常用的激活函数有 sigmoid、 tanh、 relu等。原创 2024-12-06 12:57:42 · 2698 阅读 · 0 评论