2025最新版AI大模型全套视频讲解:Langchain+LangGraph+MCP+Coze智能体开发实战!
2025最新版AI大模型全套视频讲解:Langchain+LangGraph+MCP+Coze智能体开发实战——三连收藏再看!【码士集团】_哔哩哔哩_bilibili
01关于AI大模型的选择(必看)_哔哩哔哩_bilibili
。。。。
以下是关于2025年AI大模型技术栈(LangChain、LangGraph、MCP、Coze)的实战开发资源与学习路径整理:
核心技术与工具
LangChain
框架用于构建基于大模型的应用程序,支持模块化链式调用、记忆管理和工具集成。典型应用场景包括问答系统、自动化工作流。关键组件:
LLMChain
:基础链式调用Agent
:动态工具选择Memory
:对话状态维护
LangGraph
扩展LangChain实现复杂工作流,支持循环和条件分支。适用于需多步骤推理的任务,如决策支持系统。
MCP(Model Control Platform)
大模型管理平台,提供统一API接口、性能监控和A/B测试功能。常用功能包括模型版本控制、请求限流。
Coze
字节跳动推出的AI Bot开发平台,低代码实现智能体搭建。支持知识库上传、插件集成和多渠道部署(微信、飞书)。
学习资源推荐
免费视频课程:
- B站搜索「LangChain 2025实战」可找到最新项目演示,涵盖本地知识库问答搭建
- YouTube频道「AI快车道」有LangGraph与Coze的对比分析
官方文档:
- LangChain中文网(langchain.com.cn)提供API速查表
- Coze开发者文档(coze.com/docs)有部署案例
开发环境搭建
基础依赖:
pip install langchain langgraph coze-sdk
典型智能体开发流程:
from langchain.agents import initialize_agent
from langgraph.graph import StateGraph
# 构建工具
tools = [SearchTool(), CalculatorTool()]
# 初始化智能体
agent = initialize_agent(tools, llm, agent_type="chat_conversational")
# 使用LangGraph扩展
workflow = StateGraph(AgentState)
实战建议
-
场景选择
从垂直领域切入,如电商客服、智能写作助手,避免泛化设计。 -
性能优化
- 使用MCP进行模型压测
- 通过LangGraph的检查点机制减少重复计算
- 部署方案
Coze平台适合快速上线,LangChain+Docker适合定制化需求。
注:具体课程需根据平台最新发布信息确认,部分2025年新特性可能处于测试阶段。