2025最新版AI大模型全套视频讲解:Langchain+LangGraph+MCP+Coze智能体开发实战!

2025最新版AI大模型全套视频讲解:Langchain+LangGraph+MCP+Coze智能体开发实战!

2025最新版AI大模型全套视频讲解:Langchain+LangGraph+MCP+Coze智能体开发实战——三连收藏再看!【码士集团】_哔哩哔哩_bilibili

01关于AI大模型的选择(必看)_哔哩哔哩_bilibili

。。。。

以下是关于2025年AI大模型技术栈(LangChain、LangGraph、MCP、Coze)的实战开发资源与学习路径整理:


核心技术与工具

LangChain
框架用于构建基于大模型的应用程序,支持模块化链式调用、记忆管理和工具集成。典型应用场景包括问答系统、自动化工作流。关键组件:

  • LLMChain:基础链式调用
  • Agent:动态工具选择
  • Memory:对话状态维护

LangGraph
扩展LangChain实现复杂工作流,支持循环和条件分支。适用于需多步骤推理的任务,如决策支持系统。

MCP(Model Control Platform)
大模型管理平台,提供统一API接口、性能监控和A/B测试功能。常用功能包括模型版本控制、请求限流。

Coze
字节跳动推出的AI Bot开发平台,低代码实现智能体搭建。支持知识库上传、插件集成和多渠道部署(微信、飞书)。


学习资源推荐

免费视频课程:

  • B站搜索「LangChain 2025实战」可找到最新项目演示,涵盖本地知识库问答搭建
  • YouTube频道「AI快车道」有LangGraph与Coze的对比分析

官方文档:

  • LangChain中文网(langchain.com.cn)提供API速查表
  • Coze开发者文档(coze.com/docs)有部署案例

开发环境搭建

基础依赖:

pip install langchain langgraph coze-sdk

典型智能体开发流程:

from langchain.agents import initialize_agent
from langgraph.graph import StateGraph

# 构建工具
tools = [SearchTool(), CalculatorTool()]
# 初始化智能体
agent = initialize_agent(tools, llm, agent_type="chat_conversational")
# 使用LangGraph扩展
workflow = StateGraph(AgentState)


实战建议

  1. 场景选择
    从垂直领域切入,如电商客服、智能写作助手,避免泛化设计。

  2. 性能优化

  • 使用MCP进行模型压测
  • 通过LangGraph的检查点机制减少重复计算
  1. 部署方案
    Coze平台适合快速上线,LangChain+Docker适合定制化需求。

注:具体课程需根据平台最新发布信息确认,部分2025年新特性可能处于测试阶段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值