【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在故障识别领域,数据分类的准确性直接影响诊断结果的可靠性。卷积神经网络(CNN)凭借强大的特征自动提取能力,能从故障数据中挖掘深层特征;支持向量机(SVM)则在小样本、高维空间的分类任务中表现优异。将两者结合构建 CNN-SVM 模型,可充分发挥各自优势,提升故障识别数据分类预测的精度与稳定性。

技术融合优势与核心原理

CNN 与 SVM 的互补性

CNN 通过卷积层、池化层和全连接层的协同作用,能自动学习数据的局部特征和全局特征,尤其擅长处理图像类故障数据(如电机振动信号的频谱图、轴承磨损的显微图像)。但 CNN 在训练样本有限时易过拟合,且全连接层的分类决策能力在小样本场景下不够突出。

SVM 基于结构风险最小化原则,通过寻找最优分类超平面实现数据分类,在小样本、非线性数据分类中泛化能力强。但其性能高度依赖手工特征提取的质量,对于复杂故障数据,人工设计有效特征难度大。

CNN-SVM 模型通过 CNN 自动提取特征,再将提取的特征输入 SVM 进行分类,既避免了手工特征提取的局限性,又利用 SVM 提升了小样本场景下的分类精度,形成 “特征自动学习 + 高效分类决策” 的协同机制。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

使用Matlab实现CNN-SVM卷积支持向量机分类预测的步骤如下: 1. 数据准备:首先,需要准备训练和测试数据集。这些数据集应包含已标记的样本图像和对应的分类标签。 2. 卷积神经网络CNN)训练:使用Matlab的深度学习工具箱,可以构建和训练卷积神经网络。首先,定义网络架构,包括卷积层、池化层、全连接层等,并设置相应的超参数(如学习率、批处理大小等)。然后,使用训练数据集对网络进行训练,通过反向传播算法优化网络权重。重复训练过程直到达到预设的准确率或迭代次数。 3. 特征提取:在训练完成后,使用训练好的CNN模型提取图像的特征表示。通过将图像输入到CNN中,获取卷积层或全连接层的输出作为特征向量。 4. 支持向量机SVM)训练:使用MatlabSVM工具箱,将CNN提取的特征向量作为输入数据,对SVM进行训练。在训练过程中,选择合适的核函数(如线性核、高斯核等),并设置相应的超参数(如正则化参数、惩罚项等)。训练过程将优化支持向量机模型的权重和偏置。 5. 分类预测:使用训练好的CNN-SVM模型进行分类预测。首先,将测试样本输入到CNN中,提取特征向量。然后,将特征向量作为输入数据,通过训练好的SVM模型进行分类预测。根据SVM模型返回的分类结果,确定图像的类别。 综上所述,借助Matlab的深度学习和机器学习工具箱,可以实现CNN-SVM卷积支持向量机分类预测。通过训练卷积神经网络支持向量机模型,提取图像特征并进行分类预测。这种组合方法可以充分利用卷积神经网络在图像识别任务中的优势,并借助支持向量机分类能力,提高分类预测的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值