
人工智能
文章平均质量分 92
知来者逆
点错技能树了
展开
-
深度学习环境安装依赖时常见错误解决
深度学习常见错误解决原创 2023-08-08 18:26:18 · 6543 阅读 · 0 评论 -
深度学习——深度学习中感受野的计算
在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上每个像素点在原始图像上映射的区域大小,这里的原始图像是指网络的输入图像,是经过预处理(如resize,warp,crop)后的图像。神经元之所以无法对原始图像的所有信息进行感知,是因为在卷积神经网络中普遍使用卷积层和pooling层,在层与层之间均为局部连接。神经元感受野的值越大表示其能接触到的原始图像范围就越大,也意味着它可能蕴含更为全局,语义层次更高的特征;原创 2024-07-04 23:59:17 · 2071 阅读 · 0 评论 -
人工智能——常用数学基础之线代中的矩阵
对于矩阵C中的每个元素C[i][j],计算它是矩阵A的第i行与矩阵B的第j列的对应元素乘积之和。即,C[i][j] = A[i][k1] * B[k1][j] + A[i][k2] * B[k2][j] + …例如,在矩阵A中,第i行第j列的元素可以表示为A[i][j]。:矩阵是数值的矩形阵列,通过特定的运算规则(如矩阵乘法),在数学、科学及工程领域中实现数据变换和问题解决的关键工具。:神经网络中的权重和偏置通常被表示为矩阵,通过矩阵乘法和激活函数的组合实现输入数据的非线性变换和特征提取。原创 2024-07-01 22:37:19 · 709 阅读 · 0 评论 -
如何阅读一篇学术论文
这有助于巩固对论文的整体理解,并弄清主要的研究进展和结论,但可以跳过公式和不熟悉的术语。通过这种深入但有计划的阅读方式,就可以更好地理解论文的核心内容,并且在阅读过程中逐渐消化和吸收其中的知识。和第一遍阅读一样,不要立刻深入核心内容,而是要充分了解论文的背景和研究出发点,包括其研究背景、方法和实验结果。更实用的方法是首先理解论文的研究背景,关注论文的「标题」、「摘要」和「结论」这三个关键部分。论文的格式实际上常常遵循着固定的结构,这种结构有助于作者整理思路,同时也帮助读者快速定位论文的要点和创新之处。原创 2024-06-25 21:33:46 · 464 阅读 · 0 评论 -
深度神经网络——什么是小样本学习?
小样本学习是指使用极少量的训练数据来开发人工智能模型的各种算法和技术。小样本学习致力于让人工智能模型在接触相对较少的训练实例后识别和分类新数据。小样本训练与训练机器学习模型的传统方法形成鲜明对比,传统方法通常使用大量训练数据。小样本学习是为了对小样本学习有更好的直觉,让我们更详细地研究这个概念。我们将研究小样本学习背后的动机和概念,探索一些不同类型的小样本学习,并涵盖高层小样本学习中使用的一些模型。最后,我们将研究一些小样本学习的应用程序。“小样本学习”描述了训练机器学习模型的实践。原创 2024-06-22 13:03:17 · 2834 阅读 · 0 评论 -
深度神经网络——决策树的实现与剪枝
是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。原创 2024-06-21 10:07:55 · 1540 阅读 · 1 评论 -
深度神经网络——什么是降维?
什么是降维?降维是用于降低数据集维度的过程,采用许多特征并将它们表示为更少的特征。例如,降维可用于将二十个特征的数据集减少到仅有几个特征。降维通常用于无监督学习任务降维是一个用于降低数据集维度的过程,采用许多特征并将它们表示为更少的特征。例如,降维可用于将二十个特征的数据集减少到仅有几个特征。降维常用于从许多功能中自动创建类的任务。为了更好地理解,我们将了解与高维数据相关的问题以及最流行的降维方法。原创 2024-06-18 21:14:17 · 2524 阅读 · 0 评论 -
使用人工智能帮忙盲人进行环境地图绘制
据报道,仓鼠、狼、黑猩猩和蝙蝠等智能动物可以学习环境地图,并选择适当的行动路径。因此,机器人自我定位和绘制环境地图以实现智能行为被认为是非常重要的。另一方面,如果通过机器学习(如神经网络)来解决一项任务,使其朝着某个目标前进,则无需任何明确的映射机制就能成功实现目标。这一机制尚未被人们所了解,而了解这一机制具有重要的学术意义和现实意义。因此,本文将研究映射机制是否是一种新出现的现象。原创 2024-06-18 09:47:24 · 710 阅读 · 0 评论 -
深度神经网络——什么是NLP(自然语言处理)?
NLP 是一个跨学科领域,它结合了语言学和计算机科学等领域已建立的技术。这些技术与人工智能结合使用来创建聊天机器人和数字助理,例如 Google Assistant 和亚马逊的 Alexa。让我们花一些时间来探讨自然语言处理背后的基本原理、NLP 中使用的一些技术以及 NLP 的一些常见用例。原创 2024-06-17 19:50:21 · 2521 阅读 · 0 评论 -
深度神经网络——深度学习中的 RNN 和 LSTM 是什么?
在讨论长短期记忆 (LSTM) 和卷积神经网络 (CNN) 的工作原理之前,我们应该先讨论一下神经网络的一般格式。神经网络旨在检查数据并学习相关模式,以便这些模式可以应用于其他数据并对新数据进行分类。神经网络分为三部分:输入层、隐藏层(或多个隐藏层)和输出层。输入层将数据输入神经网络,而隐藏层则学习数据中的模式。数据集中的隐藏层通过“权重”和“偏差”连接到输入和输出层,这只是数据点如何相互关联的假设。这些权重在训练期间进行调整。当网络训练时,模型对训练数据(输出值)的猜测将与实际训练标签进行比较。原创 2024-06-16 13:54:00 · 1036 阅读 · 0 评论 -
深度神经网络——语音识别技术的探索与应用
最近,随着深度学习与大量语音数据的结合,语音识别技术取得了重大进展,特别是在声学和语言学两个层面整合了深度学习方法。从经典语音识别系统到深度神经网络(DNN),语音识别的性能有了显著提高。然而,人们仍然难以理解 DNNs 是如何学习的。以前的研究重点是语音特征和音素,而最新的研究则试图深入了解语音识别系统是如何处理信息的。特别是,关注语音识别系统中的声学模型,研究哪些信息在哪一层被处理,将有助于开发出更好的语音识别技术。原创 2024-06-13 10:06:24 · 1096 阅读 · 0 评论 -
深度神经网络——图像分类如何工作?
智能手机如何仅凭拍摄的照片就能识别物体?社交媒体网站又是如何自动标记照片中的人物?这些功能背后,是人工智能驱动的图像识别和分类技术。图像识别和分类技术是人工智能领域中一些最令人瞩目的成就。但计算机是如何学会检测和分类图像的呢?本文将介绍计算机对图像进行解释和检测的一般方法,并探讨一些用于图像分类的流行技术。原创 2024-06-11 22:18:55 · 1870 阅读 · 0 评论 -
深度神经网络——什么是深度强化学习?
当谈到深度强化学习时,环境通常用图像来表示。图像是特定时间点环境的捕捉。代理必须分析图像并从中提取相关信息,使用这些信息来告知他们应该采取哪些行动。深度强化学习通常使用两种不同技术之一进行:基于价值的学习和基于策略的学习。基于价值的学习技术利用卷积神经网络等算法和架构深Q网络。这些算法通过将图像转换为灰度并裁剪掉图像中不必要的部分来进行操作。然后,图像经过各种卷积和池化操作,提取图像中最相关的部分。然后使用图像的重要部分来计算代理可以采取的不同操作的 Q 值。Q 值用于确定代理的最佳行动方案。原创 2024-06-06 23:27:19 · 1789 阅读 · 0 评论 -
深度神经网络——什么是扩散模型?
扩散模型,也称为去噪扩散概率模型,是一种先进的生成模型,它通过模仿数据的自然扩散过程来创造新的样本。这种模型的设计理念受到了自然界中扩散现象的启发,例如热量或物质在空间中的传播。在技术层面,扩散模型通过变分推理来训练一个参数化的马尔可夫链。马尔可夫链是一种数学工具,用于描述系统状态随时间的转移,这里的“状态”可以是图像中的像素配置、音频信号的波形,或其他任何形式的数据表示。在这个过程中,系统的未来状态仅依赖于当前状态,而与过去的状态无关,这称为马尔可夫性质。原创 2024-06-05 12:55:30 · 2087 阅读 · 0 评论 -
深度神经网络——什么是 CNN(卷积神经网络)?
神经网络是一种受到人脑结构和功能启发的计算模型。它们由多层神经元组成,这些神经元通过加权连接相互关联。这些权重代表了输入数据特征之间的关系,以及它们与特定输出类别之间的联系。在神经网络的操作中,数据被输入到网络中,并通过层层神经元进行处理。每一层的神经元会对接收到的信号进行加权求和,然后通过一个激活函数来决定是否以及如何激活下一层的神经元。在训练过程中,网络的目标是通过调整这些权重来最小化输出和实际值之间的差异。原创 2024-06-04 19:48:40 · 4213 阅读 · 1 评论 -
深度神经网络——什么是梯度下降?
梯度下降是一种通过模拟下山过程来寻找函数最小值的算法。在神经网络的上下文中,这个过程被用来最小化损失函数,即减少网络预测与实际结果之间的差异。想象一下,损失函数可以被看作是一个多维的地形图,其中包含了神经网络所有可能的权重组合。这张图上的每个点都代表了一个特定的权重设置,而点的高度代表在这个权重设置下的损失值。我们的目标是找到这个地形图中最低的点,也就是损失最小的点。梯度:代表了在这个地形上任何给定点的最快下降方向,也就是指向损失增加最快的方向。原创 2024-06-03 17:03:57 · 1635 阅读 · 0 评论 -
深度神经网络——什么是梯度提升?
在数据科学竞赛中,梯度提升模型(Gradient Boosting)是一种非常强大的工具,它能够将多个弱学习模型组合起来,形成一个强学习模型。这个过程是通过逐步添加弱学习者来实现的,每个新加入的弱学习者都专注于当前整体模型的弱点,从而逐步提高预测的准确性。原创 2024-06-01 11:18:19 · 1546 阅读 · 0 评论 -
深度神经网络——什么是线性回归?
线性回归是一种用于预测或可视化的算法。在线性回归任务中,要检查两种变量:。自变量是独立的变量,不受其他变量的影响。随着自变量的调整,因变量的水平将会波动。因变量是正在研究的变量,也是回归模型求解/尝试预测的变量。在线性回归任务中,每个观察/实例都由因变量值和自变量值组成。这是对线性回归的快速解释,但让我们通过查看线性回归的示例并检查它使用的公式来确保我们更好地理解线性回归。原创 2024-05-31 21:22:26 · 970 阅读 · 0 评论 -
深度神经网络——贝叶斯与朴素贝叶斯定理
贝叶斯定理是概率论中一个非常重要的概念,它提供了一种在已知某些相关事件的概率时,计算另一个事件发生概率的方法。在你提供的内容中,贝叶斯定理被描述为一种“魔法”,因为它能够使计算机通过分析大量的数据来预测人们可能想要的结果,例如搜索引擎如何理解用户搜索“自动系鞋带的电影”时可能指的是《回到未来》。原创 2024-05-28 12:24:52 · 1112 阅读 · 0 评论 -
人工智能——什么是摩尔定律以及它如何影响人工智能?
1965年,英特尔联合创始人戈登·摩尔做出了一个大胆的预测。他表示,芯片上的晶体管数量每两年就会增加一倍。这个简单的观察已经被坚持了 50 多年。随着芯片变得越来越小、功能越来越强大,它们推动了一系列令人惊叹的技术进步。从个人电脑和互联网到移动电话和人工智能(AI),摩尔定律对我们的世界产生了深远的影响。人工智能特别适合利用摩尔定律预测的计算能力的持续指数增长。这是因为人工智能需要大量数据和计算能力来训练其算法。随着芯片不断变得更小、功能更强大,人工智能将变得更加普遍和具有影响力。原创 2024-05-27 11:42:38 · 1908 阅读 · 0 评论 -
深度神经网络——什么是决策树?
决策树 [经常有用](https://www.techwalla.com/articles/advantages-disadvantages-of-decision-trees) 当需要进行分类但计算时间是主要限制时。 决策树可以清楚地表明所选数据集中的哪些特征最具预测能力。 此外,与许多用于对数据进行分类的规则可能难以解释的机器学习算法不同,决策树可以呈现可解释的规则。 决策树还能够利用分类变量和连续变量,这意味着与只能处理这些变量类型之一的算法相比,需要更少的预处理。原创 2024-05-26 11:08:18 · 1260 阅读 · 0 评论 -
深度神经网络——什么是 K 均值聚类?
在研究用于执行 K 均值聚类的确切算法之前,先来看看什么定义聚类:集群只是项目组,而集群只是将项目放入这些组中。从数据科学的意义上来说,聚类算法确保集群中的所有数据点尽可能彼此相似。确保不同集群中的所有数据点尽可能彼此不同。聚类算法根据某种相似性度量将项目分组在一起。这通常是通过查找数据集中不同可能组的“质心”来完成的,尽管不完全如此。有多种不同的聚类算法,但所有聚类算法的目标都是相同的,即确定数据集固有的组。原创 2024-05-25 11:03:21 · 850 阅读 · 0 评论 -
深度神经网络——什么是联合学习?
训练人工智能模型的传统方法涉及设置服务器,通常通过使用基于云的计算平台来对模型进行数据训练。然而,在过去几年中,出现了另一种模型创建形式,称为联合学习。联合学习将机器学习模型引入数据源,而不是将数据引入模型。联合学习将多个计算设备连接到一个去中心化系统中,允许收集数据的各个设备协助训练模型。在联合学习系统中,属于学习网络一部分的各种设备均在设备上拥有模型的副本。原创 2024-05-24 10:18:39 · 2558 阅读 · 0 评论 -
深度神经网络——什么是自动编码器?
自动编码器是一种无监督机器学习算法,它通过反向传播进行训练,目标值被设置为与输入值相等。其核心目标是对输入数据进行压缩,转换成一个更小的表示形式,如果需要原始数据,可以从压缩后的数据中重建。原创 2024-05-23 12:03:00 · 2790 阅读 · 0 评论 -
深度神经网络——什么是混淆矩阵?
混淆矩阵是一种在机器学习和数据科学中广泛使用的分析工具,用于评估分类模型的性能。它通过比较实际类别和模型预测的类别来提供模型性能的详细信息。:混淆矩阵是一个表格,通常有两行两列(对于二分类问题)或更多行和列(对于多分类问题)。每一行代表实际类别,每一列代表预测类别。:矩阵中的元素表示不同类别的样本数量。:与其他性能指标(如简单准确度)相比,混淆矩阵提供了更全面的模型性能视图。它可以帮助识别模型在特定类别上的表现,特别是当模型倾向于错误地识别某个类别时。:虽然混淆矩阵非常有用,但它也有局限性。原创 2024-05-22 10:18:32 · 2836 阅读 · 0 评论 -
深度神经网络——什么是生成式人工智能?
生成式人工智能最近引起了很大的关注。该术语用于指依赖无监督或半监督学习算法来创建新的数字图像、视频、音频和文本的任何类型的人工智能系统。麻省理工学院表示,生成式人工智能是过去十年人工智能领域最有前途的进展之一。通过生成式人工智能,计算机可以学习与输入相关的基本模式,从而使它们能够输出类似的内容。这些系统依赖于生成对抗网络(GAN)、变分自动编码器和变压器。围绕生成式人工智能的炒作正在稳步增长,Gartner 将其纳入““ 报告。据该公司称,它是市场上最具影响力和发展最快的技术之一。原创 2024-05-21 11:39:12 · 1512 阅读 · 1 评论 -
深度神经网络——什么是迁移学习?
在练习机器学习时,训练模型可能需要很长时间。从头开始创建模型架构、训练模型,然后调整模型需要大量的时间和精力。训练机器学习模型的一种更有效的方法是使用已经定义的架构,可能具有已经计算出的权重。这是背后的主要思想,采用已使用的模型并将其重新用于新任务。在深入研究迁移学习的不同使用方式之前,让来了解为什么迁移学习如此强大且有用的技术。原创 2024-05-20 08:28:02 · 1452 阅读 · 1 评论 -
深度神经网络——什么是边缘人工智能和边缘计算
为了真正理解边缘AI,我们首先需要理解边缘计算,而理解边缘计算的最佳方式是 边缘计算就是将它与云计算进行对比。云计算是通过互联网提供计算服务。相比之下,边缘计算系统不连接到云端,而是在本地设备上运行。这些本地设备可以是专用的边缘计算服务器、本地设备、 或物联网 (IoT)。使用边缘计算有很多优点。例如,基于互联网/云的计算受到延迟和带宽的限制,而边缘计算则不受这些参数的限制。现在我们了解了边缘计算可以看看Edge AI。边缘人工智能结合了人工智能和边缘计算。人工智能算法在支持边缘计算的设备上运行。原创 2024-05-19 23:01:24 · 1779 阅读 · 0 评论