
大模型应用开发
文章平均质量分 89
大模型应用开发相关内容
tataCrayon|啾啾
Java 开发|正在深入大模型
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LLM应用开发学习路线:快速入门路线与教程汇总
本文分享LLM应用开发的学习路线与资源汇总,包含Python基础、LLM核心技术(RAG/Agent)的进阶路径。作者在GitHub开源了系统化学习资料库(https://github.com/tataCrayon/LLM-DEV-COOKBOOK),提供从入门到实践的完整教程与代码Demo。内容涵盖核心知识图谱、学习框架图及分阶段教程索引,适合开发者快速掌握大语言模型应用开发的关键技能。欢迎交流指正,共同探索LLM技术落地场景。原创 2025-07-08 08:30:00 · 897 阅读 · 0 评论 -
LangChain快速筑基(带代码)P8(完结)-SimpleRAG
摘要 本文介绍了一个基于LangChain框架的简单RAG(检索增强生成)实现方案。代码整合了多个模块:1)使用DeepSeek API初始化LLM;2)加载HuggingFace中文嵌入模型;3)构建Chroma向量数据库。核心RAG链通过检索相关文档并将其格式化为上下文,结合提示模板生成回答,当信息缺失时会明确告知用户。文中提供了完整的Python代码实现,包括各组件初始化、文档格式化处理以及RAG链的构建流程,并推荐了几个测试问题来验证系统效果。原创 2025-06-03 21:56:21 · 284 阅读 · 0 评论 -
LangChain快速筑基(带代码)P7-LLM外部数据检索Retrievers
文章摘要 本文介绍了LangChain中的Retriever机制,重点讲解了VectorStoreRetriever的实现与应用。作者通过代码演示如何将向量数据库转换为Retriever,并配置不同检索策略(相似性搜索/MMR),同时展示过滤元数据等高级用法。文章延续上篇的chroma数据库实例,详细说明Retriever统一交互标准的意义,以及通过search_kwargs参数定制搜索行为的方法(如设置返回数量k、元数据过滤等)。最后提供了完整的Python实现示例,包括初始化嵌入模型、加载持久化数据库及原创 2025-06-03 21:54:07 · 887 阅读 · 0 评论 -
LangChain快速筑基(带代码)P6-文本转向量存储
摘要 本文介绍了LangChain中文本转向量存储的关键步骤,主要包含两部分:嵌入模型(Embeddings)和向量数据库(Vector Stores)。嵌入模型(如HuggingFaceEmbeddings)将文本转换为语义向量,向量数据库(如Chroma)则高效存储和检索这些向量。文章通过代码示例展示了如何使用RecursiveCharacterTextSplitter分割文本、HuggingFaceEmbeddings生成向量,并最终存入Chroma数据库的过程。核心流程包括:文档分割→嵌入生成→向量原创 2025-06-03 21:52:39 · 874 阅读 · 0 评论 -
LangChain快速筑基(带代码)P5-已加载文本处理Text Splitters
在上一篇中,我们已经成功做到加载各类型数据。如果直接将整个长文档扔给大模型还有几个问题:上下文窗口限制、成本高、效率低、检索效果差。为了解决这些问题,LangChain提供了**文本分割器 (Text Splitters)**。原创 2025-06-02 10:15:00 · 773 阅读 · 0 评论 -
LangChain快速筑基(带代码)P4-文档加载Document Loaders(RAG起点)
怎么让大模型基于自己提供的数据做出回答呢?LangChain提供了文档加载器Document Loaders用于从各种来源(PDF文件、TXT文件、网页、数据库等)加载数据到LangChain中。数据加载之后,LangChain就可以使用其他组件(如文本分割器 Text Splitter、向量存储 Vector Store、检索起 Retriever)来实现基于数据的问答啦。原创 2025-06-02 10:00:00 · 977 阅读 · 0 评论 -
LangChain快速筑基(带代码)P3-连续对话Memory
摘要 本文介绍了LangChain中的Memory组件功能及其在多轮对话中的应用。Memory通过存储和加载历史对话内容,使大模型能够保持上下文连贯性。文章重点演示了两种基础Memory类型: ConversationBufferMemory - 完整记录所有历史对话,适用于需要完整上下文的场景。代码示例展示了如何初始化内存、创建对话链并进行多轮对话测试。 ConversationBufferWindowMemory - 只保留最近的K轮对话,防止上下文过长。文中提供了转换到窗口内存的方法,但完整代码未展示原创 2025-05-31 18:29:46 · 648 阅读 · 0 评论 -
LangChain快速筑基(带代码)P2-链式调用Chains
本文介绍了LangChain中的链式调用(Chains)概念,重点讲解了两种链式结构:SimpleSequentialChain和SequentialChain。SimpleSequentialChain适用于简单顺序流程,将前一个链的输出自动传递给下一个链;而SequentialChain更灵活,支持多输入输出和中间结果访问。文章还介绍了StrOutputParser、LCEL语法和RunnablePassthrough等辅助组件,并通过代码示例展示了如何构建一个从故事标题生成到情节概要的多步骤链式流程。原创 2025-05-30 12:35:16 · 714 阅读 · 0 评论 -
LangChain快速筑基(带代码)P1-输入控制与输出解析
摘要: 本文介绍了如何利用LangChain框架增强AI对话的可控性,重点讲解提示模板(Prompt Templates)和输出解析器(Output Parsers)的使用。通过代码示例演示了如何规范输入指令、约束AI角色(如设为LangChain专家),并动态生成结构化输出(如JSON或列表)。文章还对比了元组语法与消息对象的差异,强调提示模板对提升对话质量的作用,适合开发者快速实现可控的AI交互场景。(150字) 关键词: LangChain、提示模板、输出解析器、AI可控性、结构化输出原创 2025-05-29 20:30:00 · 1474 阅读 · 0 评论 -
【LangChain入门】1-DeepSeek简单对话与联网搜索
以本篇开始快速实践入门。原创 2025-04-23 17:45:53 · 865 阅读 · 0 评论