【论文整理】时间序列领域的MOE(Mixture of Experts)

[ICLR2025] Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts

在这里插入图片描述
首先引入MOE架构,达到2.4B参数量。同时贡献了Time-300B,一个巨大的时序数据集。

[AAAI 2025] Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Detection

在这里插入图片描述
在不同序列间建图,跑GNN,然后接MOE。每个expert处理一个layer的信息(就是每层GNN出来,都接一个expert)

[ICML2025] Empowering Time Series Foundation Models with Sparse Mixture of Experts

https://arxiv.org/pdf/2410.10469
在这里插入图片描述

主要贡献在于将MOE应用于时序基础模型,整合不同尺度的序列。

FreqMoE: Enhancing Time Series Forecasting through Frequency Decomposition Mixture of Experts

https://arxiv.org/pdf/2501.15125v1
在这里插入图片描述

核心操作是,每个expert只关注一段频域内的信息。因而,再FFT后,为每个expert分配一定的频域区间,分配边界的计算:
在这里插入图片描述
然后将边界排序:
在这里插入图片描述
其中 θ i \theta_i θi是可学习参数。每个expert只处理当前区间内的频域信息。聚合所有expert的结果后,再将频域特征IFFT回来,变成时域特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值