DeepSeek R1 模型是 DeepSeek 团队推出的一款重要的大语言模型,旨在通过强化学习提升大型语言模型的推理能力。
模型架构
DeepSeek-R1-Zero
DeepSeek-R1-Zero 是 DeepSeek 团队推出的第一代推理模型,完全依靠强化学习(RL)训练,不依赖任何监督微调(SFT)数据。该模型通过大规模强化学习展现了强大的推理能力,如自我验证和长链推理,但也存在可读性差和语言混杂等问题。
DeepSeek-R1-Zero 的成功证明了纯强化学习在提升大语言模型推理能力方面的潜力,尽管面临可读性差和语言混合等挑战,但其自我进化过程和推理能力显著优于传统方法。
DeepSeek-R1
DeepSeek-R1 是在 DeepSeek-R1-Zero 的基础上改进的模型,采用了多阶段训练流程,结合了冷启动数据、强化学习和监督微调。该模型在推理任务中的表现与 OpenAI-O1-1217 相当,且在多个基准测试中表现优异。
DeepSeek-R1 通过引入多阶段训练和冷启动数据,有效解决了 DeepSeek-R1-Zero 的可读性和语言混杂问题,显著提升了模型的推理能力和通用性。
训练过程
冷启动阶段
在冷启动阶段,DeepSeek-R1 使用少量高质量的长思维链(CoT)数据对基础模型进行微调,确保训练初期的稳定性。这些数据通过带有详细反思和验证步骤的提示生成,并用于微调模型。
冷启动阶段通过提供结构化的长思维链数据,帮助模型在强化学习初期更好地理解和处理复杂