Coze、Dify 和 n8n 均可视为低代码/无代码平台,但三者在核心定位、AI 集成方式和适用场景上存在显著差异。以下是具体对比分析:
一、低代码特性对比
平台 | 低代码能力 | AI 原生性 | 核心功能定位 |
---|---|---|---|
Coze | 零代码为主,拖拽式界面+插件模板化配置,无需编程基础 | 强(深度集成 NLP 和大模型) | 快速构建 AI 聊天机器人及自动化对话流程 |
Dify | 低代码为主,需理解 Prompt 工程和 AI 工作流设计 | 强(原生支持 LLM 和 RAG 技术) | 开发大语言模型驱动的智能应用(如写作、客服、数据分析) |
n8n | 低代码+代码扩展,需 JavaScript 基础实现复杂逻辑 | 弱(需通过 API 集成 AI 服务) | 跨系统工作流自动化(非 AI 专用) |
二、AI 工具整合方式
-
Coze
- AI 核心功能:直接调用内置大模型(如 GPT-4、字节自研模型),通过自然语言交互生成对话流,支持多模态插件(如图像生成、网页解析)。
- 典型场景:抖音客服机器人、多语言翻译助手、社交媒体内容自动生成。
-
Dify
- AI 核心功能:以 LLM 为核心构建应用,支持 RAG 知识库、Agent 编排,可接入 OpenAI、Claude 等第三方模型。
- 典型场景:企业级智能客服、法律文档自动生成、销售预测工具。
-
n8n
- AI 整合方式:通过 API 节点调用外部 AI 服务(如 OpenAI、Google AI),需自行配置逻辑。
- 典型场景:AI 生成内容同步至 CRM、社交媒体舆情监控自动化。
三、适用人群与场景推荐
-
Coze
- 适用人群:非技术人员(如运营、客服)、快速验证 AI 对话场景的需求方。
- 优势场景:零代码搭建跨平台聊天机器人(如飞书、微信)、轻量级自动化交互(如订单查询)。
-
Dify
- 适用人群:略懂 AI 的业务人员、中小企业开发者。
- 优势场景:需要结合私有数据的智能应用(如企业知识库问答)、低代码实现 AI 工作流(如营销文案批量生成)。
-
n8n
- 适用人群:技术团队、DevOps 工程师。
- 优势场景:复杂系统集成(如 ERP 与 AI 服务联动)、非 AI 主导的流程自动化(如数据清洗与跨平台同步)。
四、关键差异总结
维度 | Coze | Dify | n8n |
---|---|---|---|
AI 定位 | 对话式 AI 专用工具 | 大模型应用开发平台 | 通用自动化工具(需外接 AI) |
技术门槛 | 完全无代码 | 低代码+AI 知识 | 低代码+编程扩展 |
数据控制 | 依赖云端托管 | 支持私有化部署 | 可自托管 |
扩展性 | 依赖插件生态 | 专注 AI 工作流扩展 | 支持自定义节点/API |
五、选择建议
- 选 Coze:需求集中于快速部署对话机器人,且团队无技术背景。
- 选 Dify:需构建私有化 AI 应用(如企业知识库),兼顾低代码与模型调优。
- 选 n8n:非 AI 主导的复杂流程自动化(如跨系统数据同步),且需开源可控。
如需进一步了解具体功能,可参考各平台官网或搜索原文链接。