上个周末去参加了一个 WHLUG 的线下活动,了解了 CherryStudio 这个 AI 工具。虽然在 UOS 系统中也有 UOS AI 助手,但作为技术从业者,别的产品也该体验一下,看看别人的产品有什么值得借鉴的地方。
前几天 CherryStudio 发布了一个里程碑版本 1.0,这标志着 CherryStudio 开始稳定成熟。CherryStudio 是一个开源的跨平台版本,在 Linux 下是 AppImg 格式,对于普通用户来说使用上稍有不便。UOS 应用商店第一时间上架了 CherryStudio,从安装到使用都简便了许多。

打开 CherryStudio,首先是一个聊天对话界面,默认使用硅基流动的服务。

如果第一时间去对话,会提示身份验证失败,请检查 API 密钥是否正确。

CherryStudio 只是一个 Chat 客户端,无法像腾讯元宝、DeepSeek 那样提供免费的接入服务,需要用户自行对接大模型服务。在《UOS AI 接入 DeepSeek R1 模型》这篇文章中有介绍过如何申请硅基流动的 DeepSeek R1 模型的 API Key,这里不赘述。CherryStudio 提供了几乎所有大模型的接入方式,大家可以根据需要自行选择。当然最务实的策略就是去各个大模型官网申请 API Key,这些服务商一般都提供了免费的 tokens 额度。都配置上来,哪个好用就切换到哪一个,至少在完整体验 AI 之前是可以白嫖的。
将 API Key 填入 CherryStudio:

填入后,最后做一下检查。

如果没有问题,就可以开始和 CherryStudio 对话了。

接下来是搭建浏览器知识库。
在 CherryStudio 中创建一个知识库。然后输入名称和嵌入模型。注意这里的嵌入模型并不是 DeepSeek R1 之类的大模型,而是用于 RAG 的模型。该模型并非直接生成内容的LLM,而是承担文档向量化的RAG(检索增强生成)核心组件。通过将非结构化文档转化为高维向量,构建起语义检索的数学基础,这种分层架构有效平衡了计算效率与知识密度。

然后就是添加文档,也可以直接添加目录以及网页。我将项目文档以及 Chromium Docs(markdown 格式)加入其中。由于 Chromium Docs 中的文档比较多,所以解析还花了一点时间。可以将鼠标移到图标上查看进度。

在 CherryStudio 解析文档的过程中,感觉有些卡顿,不知道是不是 RAG 模型需要使用本地算力。在文档解析完成后,在对话框中可以选择知识库。

然后我可以针对项目具体的问题向 AI 提问。比如:
UOS 浏览器国密需求是从哪个版本开始 支持的?

不仅给出了答案,还给出了具体的文档位置。
对于个人而言,CherryStudio 的价值不仅在于知识沉淀,更在于创造了人机协同的新型知识迭代模式。随着大模型技术的持续演进,未来或可期待实时知识更新、多源数据融合等进阶功能的实现,真正打造出自我进化的智能知识生态系统。
CherryStudio 还只是一个个人知识库的工具,不知道未来是否支持团队协作。如果能够只是团队协作,使用场景会更加丰富。大家使用怎样的工具搭建自己的知识库呢?欢迎留言讨论。