
ML
文章平均质量分 94
Moliay
纵有bug起,编程不言弃
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
西瓜书笔记
下列关于Boosting算法中样本权重调整的说法中错误的是哪个?A、所有样本的权重和保持不变B、前一个基学习器分错的样本会获得更大的权重C、只要权重调整的方向正确,Boosting算法的性能就可以获得理论保证D、决策树可以直接处理带权重的样本解析:CBoosting是一种____ (同质/异质) 集成学习方法。解析:同质下列关于Bagging算法描述中错误的是哪个?A、Bagging算法中每个基学习器使用相同的数据集B、分类任务中使用投票法获得输出。原创 2023-11-07 17:50:29 · 2599 阅读 · 0 评论 -
贝叶斯科普入门
刘未鹏 《数学之美番外篇:平凡而又伟大的贝叶斯方法》http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/刘未鹏 | Mind Hacks思维改变生活心智探寻 思维改变生活 学习方法 算法 计算机科学 数学 机器学习与人工智能 编程数学之美番外篇:平凡而又神奇的贝叶斯方法概率论只不过是把常识用数学...转载 2018-10-19 13:15:14 · 372 阅读 · 0 评论 -
机器学习小白入门①
机器学习常用的理论分类:传统的监督学习 深度学习 强化学习建议按照上面列出的顺序作为学习路线 文本分类:PS:其中特征工程尤为重要,特征决定了机器学习的上限,而机器学习只是在逼近这个上限 字组成词,词才具有意义;而中文分词将句子拆分为一个个的词; 监督学习: 提高模型性能方法:①数据预处理 从本源出发②特征工程 the key③机器学习算法 就像找对象,适合最重要④模型集...原创 2018-11-29 20:27:46 · 198 阅读 · 0 评论