
机器学习核心算法专栏
文章平均质量分 95
解锁机器学习核心!本专栏聚焦十大经典算法,从原理、优劣、选择到实战应用,带你系统掌握分类、回归、聚类等关键技术。助你构建扎实AI基础,提升解决实际问题的能力,是初学者和开发者的必备学习指南。
34号树洞
の,记点啥吧~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习模型谱系图——生成式模型与判别式模型
机器学习模型谱系图,聚焦于 生成式模型(Generative Models) 与 判别式模型(Discriminative Models) 的基本分类逻辑。原创 2025-06-04 08:15:00 · 849 阅读 · 0 评论 -
机器学习核心十大算法:选型、对比与应用指南
十大核心机器学习算法深入介绍原创 2025-06-04 08:30:00 · 1163 阅读 · 0 评论 -
机器学习知识图谱——PCA(主成分分析)算法
PCA 是一种常用的降维算法,目标是:在保持数据主要特征的前提下,通过线性变换将高维数据投影到较低维空间。它可以最大程度保留数据的方差(信息量),同时消除冗余特征,常用于数据预处理、可视化、加速机器学习模型等场景。原创 2025-06-03 08:30:00 · 775 阅读 · 0 评论 -
机器学习知识图谱——马尔科夫链(Markov Chain Algorithm)算法
马尔可夫链算法 并不是一种“单一的算法”,而是一类基于马尔可夫过程模型的算法集合。其目标是:利用状态转移概率预测未来状态序列、计算稳态概率、生成数据序列或分析序列的性质。原创 2025-06-03 08:15:00 · 719 阅读 · 0 评论 -
机器学习知识图谱——朴素贝叶斯算法
朴素贝叶斯是一种基于贝叶斯定理与特征条件独立假设的概率分类算法。适用于:文本分类、垃圾邮件识别、情感分析、医学诊断、舆情分类 等领域。原创 2025-06-02 08:30:00 · 1146 阅读 · 0 评论 -
机器学习知识图谱——逻辑回归算法(Logistic Regression)
逻辑回归是一种 用于分类问题的监督学习算法,尽管它名字中有“回归”,但其实是用于解决 二分类或多分类 问题的。它通过将线性回归结果映射到 (0, 1) 区间上的概率值,来实现分类判断。原创 2025-06-02 08:15:00 · 1147 阅读 · 0 评论 -
机器学习知识图谱——K-means++聚类算法
K-means 是一种无监督学习算法,主要用于将数据自动划分为 K 个簇(cluster),使得每个簇内的数据尽可能相似,而不同簇之间的数据尽可能不同。- 每个簇由一个“质心”(中心点)代表;- 数据点被分配到距离最近的质心所在的簇中。原创 2025-05-31 08:30:00 · 692 阅读 · 0 评论 -
机器学习知识图谱——NN全连接神经网络算法
全连接神经网络是最基础的一类人工神经网络(Artificial Neural Network, ANN),每一层的每个神经元都与下一层的每个神经元相连,主要用于处理结构化数据,如分类、回归任务。也称作 MLP(Multilayer Perceptron,多层感知机)原创 2025-05-31 08:15:00 · 1002 阅读 · 0 评论 -
机器学习知识图谱——Adaboost(自适应提升算法)
Adaboost 是一种集成学习方法,属于 Boosting 框架,通过组合多个弱分类器形成一个强分类器,提高模型精度。核心思想:每一轮训练都“关注”前一轮分错的样本,并动态调整样本权重。原创 2025-05-30 08:30:00 · 957 阅读 · 0 评论 -
机器学习知识图谱——支持向量机算法(SVM)
支持向量机是一种强大的监督学习算法,可用于分类和回归问题,尤其擅长处理小样本、高维度、非线性问题。原创 2025-05-30 08:15:00 · 918 阅读 · 0 评论 -
机器学习知识图谱——决策树算法(Decision Tree)
决策树是一种 基于树结构的监督学习算法,可用于分类(Classification)和回归(Regression)任务。它通过对特征进行分裂,构造一条条从根节点到叶节点的“决策路径”,从而完成预测。目标:通过学习特征与标签之间的关系,生成一颗“可以用于判断未来数据”的决策树。原创 2025-05-29 08:15:00 · 719 阅读 · 0 评论 -
机器学习知识图谱——随机森林算法(Random Forest)
随机森林是一种集成学习(Ensemble Learning)方法,它通过构建多个决策树,并将它们的结果进行投票(分类)或平均(回归),来提升预测的准确性和稳定性。本质:多个“弱分类器”(决策树)组合成一个“强分类器”。原创 2025-05-29 08:30:00 · 769 阅读 · 0 评论