- 博客(726)
- 收藏
- 关注
原创 飞算JavaAI重构企业级开发-3天交付金融级系统,漏洞率下降90%的终极实践【Java项目实战】
在本次实践中,我们借助飞算JavaAI,仅用3天时间就成功构建并交付了一个具备金融业务流程、权限管理、数据风控等复杂模块的系统,系统初测漏洞率相比传统项目下降超过90%。这一成果不仅验证了AI驱动的开发模式的可行性,更为金融级系统的敏捷构建提供了全新解决方案。
2025-07-01 10:50:31
2186
原创 华为云Flexus+DeepSeek征文|保姆级教学构建股票投资顾问智能体AI Agent
借助华为云Flexus平台与DeepSeek大模型强大的自然语言理解与多模态处理能力,我们可以快速搭建一款“保姆级”的股票投资顾问AI Agent —— 它不仅能够实时分析市场动态,还能用通俗易懂的语言解释复杂的技术指标,帮助用户建立对行情的直观理解。同时,通过历史数据回测功能,用户可验证自己的交易策略效果,避免盲目入场
2025-06-30 23:47:56
596
原创 华为云Flexus+DeepSeek征文|构建程序员的智能体编程导师「CodeWhisperer」
借助华为云 **Flexus ** 与 DeepSeek 编程能力大模型,我们打造了智能体编程导师「CodeWhisperer」。它不仅能实时解析用户提出的编程问题,还能以对话方式讲解核心概念、生成高质量的 Python / Java 等语言代码片段,并协助进行调试与优化。无论是入门教学、算法训练还是项目实战,它都能像一位贴身导师一样,随时提供精准指导。
2025-06-30 23:40:35
907
原创 华为云Flexus+DeepSeek征文|手把手教你部署辩论对手「ArgueMaster」智能体开发
ArgueMaster旨在扮演多种立场角色(如环保主义者 vs 企业家、科技乐观者 vs 隐私保守派等),与用户就社会议题、科技伦理、商业模式等展开结构化对话辩论。智能体具备自动生成反方论点、评估说服力、分析逻辑漏洞等功能,打破传统“单向问答”的限制,向“交互思维训练”迈进。通过该智能体,我们希望推动LLM在批判性思维训练、观点对抗生成等方向的落地探索,并为未来AI辅助教育、法律论证、政策制定等场景提供通用型模型能力参考。
2025-06-30 22:34:22
918
原创 华为云Flexus+DeepSeek征文|创意写作助手「InkFlow」智能体构造过程记录
本项目构建了一款名为「InkFlow」的创意写作助手智能体。它不仅能够理解用户的写作意图,还能协助进行灵感生成、标题撰写、结构规划、文风调整乃至全文续写,致力于打造一个真正“懂你所写”的智能创作伙伴。通过图形化流程编排、意图触发机制与多轮交互对话能力,「InkFlow」在Flexus平台上实现了从构想到成文的完整闭环,极大地激发了创作者的创作潜能。
2025-06-30 22:13:47
669
原创 华为云Flexus+DeepSeek征文|基于华为快速搭建Dify LLM应用开发平台开发历史人物模拟器「TimeWalker」智能体
「TimeWalker」智能体应运而生——这是一个以历史人物模拟为核心、融合知识问答与语义生成的AI智能体。通过华为云提供的Flexus一站式开发环境与Dify平台的低代码/零代码部署能力,开发者可高效构建具备高拟真历史对话能力的智能体系统,实现“与孔子论礼”、“向爱因斯坦提问相对论”、“和李时珍探讨草药”等丰富交互场景。
2025-06-30 21:59:06
660
原创 华为云Flexus+DeepSeek征文| 虚拟心理医生「心语」智能体构建
本项目依托华为云Flexus应用开发平台与DeepSeek大模型推理服务,构建了名为**「心语」**的虚拟心理医生智能体,旨在打造一个专业、亲和、稳定的心理对话伙伴,帮助用户在情绪低落、压力过大、孤独无助时找到一个可以“倾听与理解”的数字朋友。
2025-06-30 21:47:27
678
原创 华为云Flexus+DeepSeek征文|梦境解析师智能体AI Agent【仅供娱乐】
借助Dify平台的多轮对话与提示词工程能力,结合华为云MaaS平台提供的大模型推理服务(如DeepSeek等中文对齐大模型),本项目将打造一个支持自然语言输入梦境内容、输出象征含义、潜意识解读与调适建议的AI Agent。它不仅能成为用户日常梦境记录与解读的工具,还能辅助用户识别情绪状态、挖掘深层心理需求,提供一种创新性的智能心理支持方式。
2025-06-29 21:05:46
693
原创 华为云Flexus+DeepSeek征文|基于华为云MaaS平台DeepSeek大模型推理服务搭建自我成长顾问导师智能体
华为云MaaS(Model-as-a-Service)平台为大模型的推理与应用提供了稳定、高效、安全的基础支撑。结合 DeepSeek 等先进的中文对齐大模型能力,可以实现对用户语言的精准理解、目标导向的反馈生成以及知识图谱辅助的成长建议推理。通过将该模型能力与多轮对话智能体框架相结合,我们可以构建一个具备目标引导、策略规划、心理激励三大核心能力的 “自我成长顾问导师智能体”。
2025-06-29 20:32:27
2875
原创 华为云Flexus+DeepSeek征文|基于Dify构建心理调适专家智能体
摘要:基于Dify平台和华为云Flexus云服务,构建了一个心理调适专家智能体解决方案。该项目旨在利用大语言模型技术,提供全天候、低成本的心理健康服务,缓解全球9亿人面临的心理健康问题。通过华为云一键部署Dify平台,结合DeepSeek-V3/R1商用服务,实现了包含情感识别、心理陪伴、疏导建议等功能的工作流。该智能体采用模块化设计,包括情感共鸣、问题定位等技术环节,最终成功部署为可在线访问的心理调适应用,有效降低了专业心理咨询的获取门槛。
2025-06-29 18:41:12
1115
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署:情感倾诉树洞AI Agent搭建流程记录
在当今快节奏、高压力的社会环境下,越来越多的人在日常生活中承受着来自学业、职场、人际关系以及情感生活等多方面的压力。然而,并非每个人都有适合的倾诉对象或心理疏导渠道,这也让情绪的积压成为普遍存在的问题。为此,情感倾诉类的AI应用应运而生,成为用户释放情绪、寻求安慰的重要途径。相比传统人工服务,AI树洞助手可提供全天候在线陪伴、情绪识别与反馈、共情式对话回应,在保证隐私安全的前提下,给予用户精神层面的支持。
2025-06-29 17:29:01
1006
原创 华为云Flexus+DeepSeek征文|基于华为云的快速搭建Dify-LLM应用开发平台快速搭建:星座运势分析师AI Agent
通过华为云的强大计算能力和灵活的云服务支持,开发者可以轻松搭建一个高效的星座运势分析平台。AI Agent能够自动分析用户的星座信息,并生成个性化的运势报告,涵盖各个维度,如爱情、事业、财运等。无论是为用户提供每日简短的星座运势预测,还是更长周期的综合运势分析,该平台都能够提供实时、精确的服务,帮助用户作出更好的生活决策。
2025-06-28 13:19:54
3105
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案:游戏攻略助手AI Agent
在这种背景下,基于华为云Flexus云服务的Dify一键部署方案应运而生,它通过人工智能技术为玩家提供实时、个性化的游戏攻略和技巧。这个AI Agent不仅能根据玩家的游戏进度提供针对性的解决方案,还能通过与玩家的互动,分享实用的游戏心得、技巧和最新的更新信息,帮助玩家解决遇到的难题。此外,Dify智能体还可以根据玩家的喜好和需求,推荐相关的游戏内容,提升玩家的游戏体验。
2025-06-28 13:07:23
4364
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案实现:阅读推荐官AI Agent
传统的书籍推荐方式往往依赖于固定的分类和关键词匹配,缺乏个性化与智能化的推荐机制。为了更好地帮助用户发掘感兴趣的书籍内容并提供更加精准的阅读推荐,华为云Flexus云服务基于先进的人工智能技术,推出了Dify一键部署方案。该方案通过构建智能推荐系统,能够结合用户的历史阅读记录、兴趣标签以及行为分析,为每个用户量身定制个性化的书籍推荐列表。
2025-06-28 12:54:33
3972
1
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify技术解决方案搭建育儿经验知识库智能体AI Agent
在现代社会,随着家庭结构和社会环境的变化,新手父母面临着前所未有的育儿挑战。从婴儿护理到幼儿教育,再到亲子关系的培养,父母在育儿过程中需要不断学习和适应新的知识和技能。然而,由于信息的碎片化、育儿经验的个体差异以及工作生活压力的影响,很多父母往往感到困惑和焦虑,难以获取到及时、专业且个性化的育儿指导。
2025-06-27 17:27:43
2760
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案搭建家庭健康顾问AI Agent
在当今快速发展的数字化时代,健康管理已经成为了人们日常生活中越来越重要的一部分。尤其是在家庭健康方面,很多家庭成员面临着健康数据分散、难以管理和及时监控的问题。为了解决这一问题,基于华为云Flexus云服务的Dify一键部署方案应运而生。
2025-06-27 17:00:52
9142
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案【小白入门指南】
在如今的数字化转型浪潮中,企业和开发者面临着越来越复杂的技术挑战,尤其是在智能应用和人工智能的快速发展中。为了提高工作效率、节省时间和成本,自动化、智能化部署方案逐渐成为了企业数字化转型的核心需求之一。华为云Flexus云服务凭借其强大的计算能力、灵活的资源调度和高可靠性,为企业提供了一个高效、可扩展的云平台。特别是在人工智能领域,华为云通过与Dify平台的结合,推出了“一键部署”方案,使得AI应用的部署变得更加简单和高效。
2025-06-27 15:51:13
8779
原创 实现一个基于时间戳的版本控制系统,用于存储文件的多个版本【基于python实现】
我们将创建一个系统,它允许用户将文件的多个版本保存到指定的目录中,并通过时间戳来标识每个版本。这样,用户可以随时查看、恢复或删除文件的历史版本。文件的版本保存:基于文件的修改时间创建时间戳,并将文件保存为不同版本。版本的查看:查看当前目录下的所有版本,基于时间戳排序。版本的恢复:恢复某一时间点的文件版本。
2025-03-19 22:14:56
1520
40
原创 设计一个分布式缓存系统,支持数据持久化和数据一致性【基于Python实现】
分布式架构:缓存数据分布在多个节点上,以应对大规模数据存储。数据持久化:确保即使系统崩溃,缓存的数据也不会丢失。数据一致性:确保缓存数据在多个节点之间保持一致性。高可用性:系统具备高可用性,能够容忍部分节点宕机。Redis:用作缓存引擎,支持高效的读写和持久化。Pythonthreading模块:用于实现节点之间的并发操作。RocksDB:作为数据持久化存储层,用于保存持久化数据。
2025-03-19 22:04:09
778
6
原创 提升大数据文件合并效率:基于Python的多线程与去重优化【合并多个已排序的文件数据算法实现】
合并多个已排序文件数据的核心问题是,如何在保证时间效率的情况下,将多个排序好的数据合并为一个全局有序的数据流。
2025-03-19 15:13:05
1169
1
原创 基于LRU算法的高效缓存管理与Python实现【LRU缓存淘汰策略的原理与应用】
虽然 LRU 是一种常见的缓存淘汰策略,但它并不适用于所有场景。根据应用的需求,可以根据具体情况修改缓存淘汰的规则。例如,我们可以基于访问频率、数据大小等因素来设计更复杂的缓存策略。除了基于使用频率和时间顺序来淘汰缓存外,还可以根据自定义的优先级来决定缓存中的数据。例如,可以为某些数据分配较高的优先级,使其更不容易被淘汰。return -1# 选择最小优先级的元素进行淘汰LRU 缓存算法在很多领域中都有着重要的应用,尤其是在需要频繁访问数据的场景中,通过高效的缓存淘汰策略,能够显著提升系统的性能。
2025-03-19 14:57:50
1509
原创 DeepSeek高效搜索指南:《高效使用DeepSeek》书籍推荐
DeepSeek是一款基于深度学习和自然语言处理(NLP)技术的搜索引擎,专为处理大规模数据集而设计。与传统的搜索工具不同,DeepSeek不仅能够处理关键词检索,还能理解上下文,进行语义搜索,帮助用户精准找到相关信息。无论是文本、图像还是多模态数据,DeepSeek都能提供深度分析和智能推荐,极大提升了搜索效率和精准度。注册与登录首先,前往DeepSeek的官方网站进行注册。创建一个账号后,你可以选择使用个人版或企业版,根据你的需求选择适合的方案。
2025-03-03 16:06:54
4461
10
原创 基于YOLOv8模型的知识蒸馏技术研究与优化
YOLOv8(You Only Look Once Version 8)作为一种广泛应用的目标检测算法,其精度和速度已在许多场景中得到验证。然而,随着网络的不断扩展,YOLOv8的模型往往较大,计算资源消耗也较高,这对边缘设备和实时检测任务构成挑战。因此,如何在保持高精度的同时,提升推理速度,成为了一个重要课题。
2025-02-18 09:30:00
1216
11
原创 利用Haar小波下采样替代传统卷积下采样在YOLOv8中的应用
在YOLOv8的传统卷积神经网络架构中,下采样通常是通过步长(stride)为2的卷积操作来实现的。这种方法虽简单且高效,但由于其局部感知能力和固定的采样方式,可能会丢失一些细节信息,尤其是在目标检测中对于小物体或细节的捕捉能力有限。Haar小波变换是一种常用的数学工具,广泛应用于图像压缩、去噪等领域。其特点在于通过分解图像为不同频率的分量来提取图像的细节信息。本文提出将Haar小波下采样(HWD, Haar Wavelet Downsampling)应用于YOLOv8中,替代传统的卷积下采样。
2025-02-18 06:15:00
1797
1
原创 HATHead: 面向小目标检测的高效混合注意力检测头在 YOLOv8 中的应用
YOLOv8是目前目标检测领域的重要基准之一,但在高分辨率目标检测任务(如卫星图像、医学影像、遥感等)中,其检测能力仍然存在瓶颈。为了提升YOLOv8在超分辨率场景下的检测精度,我们提出了一种**混合注意力变换器检测头(Hybrid Attention Transformer Head, HATHead)**,该方法结合**卷积特征提取能力**和**变换器的全局建模能力**,专注于细节信息的保持和特征融合。
2025-02-17 00:15:00
1529
10
原创 YOLOv8 细节涨点:利用 RayTune 进行高效超参数优化的实证研究
RayTune 是基于 Ray 分布式计算框架的超参数优化库,支持多种搜索算法,如(网格搜索)、(随机搜索)、(贝叶斯优化)等。它可以高效地并行化搜索,使得超参数调优更加高效和精准。在YOLOv8的train.py训练脚本中,Ultralytics已经集成了 RayTune,我们可以通过简单的配置来调用该工具。如果想要更细粒度的控制,我们可以在 Python 代码中调用 RayTune 进行搜索。# 定义搜索空间# 训练函数。
2025-02-16 09:45:00
895
1
原创 低照度与极端天气环境中的YOLOv8优化:CPA-Enhancer网络的应用与分析
为了克服上述问题,本文提出了一种名为的网络改进方案。CPA-Enhancer通过引入链式思考机制和改进的注意力机制,有效地提升了YOLOv8在低照度和复杂天气下的表现。本文提出了针对低照度和恶劣天气条件下目标检测的YOLOv8改进方案——CPA-Enhancer链式思考网络。通过引入低照度图像增强和多尺度特征融合技术,CPA-Enhancer显著提高了YOLOv8在低光照、雾霾、雨雪等环境下的检测性能。实验结果表明,CPA-Enhancer相较于原始YOLOv8,在多个指标上都有显著的提升,尤其是在mAP。
2025-02-16 00:30:00
1242
原创 利用RayTune进行YOLOv8超参数调优的系统性方法
RayTune是一个用于超参数优化的开源框架,它可以通过分布式计算来加速搜索最优超参数。RayTune能够与多种机器学习框架兼容,包括TensorFlow、PyTorch等。在YOLOv8中,RayTune被用来调节模型的各类超参数,如学习率、批大小、优化器等,帮助我们快速找到最佳配置。通过RayTune与YOLOv8结合,我们不仅能够实现自动化的超参数调优,还可以根据实验结果对模型进行精细化的优化。
2025-02-16 00:15:00
761
原创 MobileViT增强YOLOv8:一种面向实时目标检测的轻量化方法
MobileViT是一种结合了卷积神经网络和视觉Transformer的轻量化网络架构。相比于传统的卷积神经网络,MobileViT通过引入自注意力机制(Self-Attention)来更有效地建模图像中的长程依赖。MobileViT v1首次提出时,便在保持较低计算量的同时,显著提高了性能。轻量化:比起标准的Vision Transformer,MobileViT设计了高效的模块,使得模型计算量大幅减少。自注意力机制。
2025-02-15 09:00:00
898
1
原创 优化YOLOv8的检测性能:多尺度训练、注意力机制与混合精度技术
PP-HGNetV2是一个轻量级的网络结构,设计时考虑到了性能与计算效率之间的平衡。其核心优势之一是引入了通道缩放机制,通过调整每一层卷积操作的通道数,从而有效减少计算量和内存消耗,同时确保模型的准确性。在YOLOv8的原始版本中,去除了PP-HGNetV2中的通道缩放功能,这导致模型在轻量化过程中牺牲了一定的性能。虽然YOLOv8依然可以在一些标准数据集上表现出色,但去除通道缩放后,模型的计算复杂度有所增加,且在一些复杂任务中的精度提升受到限制。
2025-02-15 00:30:00
1221
原创 利用注意力机制提升YOLOv8目标检测性能:GAM、CBAM、CA与多头注意力的对比分析
GAM是一种通过全局信息加权的通道注意力机制,其主要目的是通过对通道之间的关系建模,选择性地加强或减弱不同通道的特征表达。GAM通常包括一个全局特征池化模块,通过对特征图进行全局池化获取全局信息,再通过一个简单的网络结构进行加权调整。多头注意力机制最早应用于Transformer模型中,它通过将输入分为多个子空间,使用不同的注意力头对不同的特征进行建模。每个头的计算过程相对独立,最终将多个头的结果合并,增加了模型捕捉复杂特征的能力。
2025-02-14 00:45:00
969
1
原创 YOLOv8与SAttention:一种轻量化自注意力检测头在目标检测、分割与姿态估计中的统一应用
轻量化:保持较低的计算成本,适应资源有限的设备。高效的多任务学习能力:能够适应目标检测、实例分割、关键点检测(Pose Estimation)等多种计算机视觉任务。增强特征学习能力:通过引入选择性注意力机制,自动选择与任务最相关的特征进行学习,从而提高精度。本文深入探讨了基于YOLOv8模型的最新改进——自研轻量化检测头SAttention,并详细介绍了其在目标检测、实例分割、和姿态估计等多任务学习中的应用。
2025-02-14 00:45:00
1082
原创 YOLOv8与UNetV2融合:目标检测任务中的图像分割性能优化
本文提出了一种创新的YOLOv8改进方法,通过引入图像分割网络UNetV2,提升了YOLOv8在图像分割任务中的性能。YOLOv8原本专注于高效的目标检测,但在细粒度的图像分割中表现并不理想。通过将UNetV2嵌入YOLOv8的主干网络,我们能够在完成目标检测的同时,显著提升分割精度。
2025-02-14 00:30:00
1166
原创 通过UNetV2集成提升YOLOv8在目标检测与图像分割中的性能
我们提出了一种基于YOLOv8和UNetV2相结合的混合架构。该架构利用YOLOv8作为主干进行目标检测,同时在YOLOv8的特征提取过程中,引入UNetV2来进行图像分割任务的增强。在该架构中,YOLOv8负责大范围目标检测和位置预测,而UNetV2则在检测网络的特征图基础上,通过其高效的上下文信息提取和细节恢复能力,进一步优化分割任务。在本文中,我们提出了一种改进YOLOv8的方法,通过引入图像分割网络UNetV2来提高图像分割检测性能。
2025-02-13 00:45:00
1115
2
原创 MB-TaylorFormer在YOLOv8中的应用:改善雾霾环境下的高分辨率目标检测
多块卷积网络:首先对输入图像进行多块划分,通过卷积神经网络(CNN)对每个块进行局部去雾处理。Transformer模块:使用Transformer结构对每个块进行全局信息的融合,增强不同区域的上下文关系。图像融合层:通过融合每个块的去雾结果,恢复全图的清晰度。这种多块结构使得MB-TaylorFormer能够处理不同细节区域的去雾问题,同时保持高分辨率图像的计算效率。本文提出了一种基于MB-TaylorFormer的YOLOv8改进方法,专注于提升图像去雾和高分辨率检测的能力。
2025-02-12 16:45:00
2301
1
原创 利用FFA-Net增强YOLOv8在雾霾图像中的目标检测性能
FFA-Net模型结合了图像去雾和特征融合的优势,旨在通过去除图像中的雾霾噪声、恢复清晰度,并进一步通过注意力机制对关键特征进行加权,从而提升YOLOv8对模糊图像的检测效果。图像去雾:通过卷积神经网络(CNN)恢复图像的清晰度,减少雾霾对图像细节的损害。特征提取:使用标准的YOLOv8骨干网络提取图像的特征。注意力机制:引入特征融合注意力机制,对图像的关键部分进行加权,突出图像中的重要特征,提高检测精度。检测:经过去雾和注意力加权后的图像进行目标检测,最终输出物体位置和类别。
2025-02-12 09:00:00
1590
2
原创 利用门控图像处理技术提升YOLOv8在恶劣环境中的目标检测能力
图像去雾是指通过去除或减少图像中由大气雾霾或低照度造成的模糊,恢复图像的清晰度。雾霾图像处理的关键目标是提高图像的对比度和细节,使得物体边缘更加明显,从而使得物体检测任务能够得到更好的结果。传统的图像去雾方法如暗通道先验(Dark Channel Prior)和大气光估计等方法虽然效果良好,但在深度学习模型中往往不够灵活,难以适应不同场景的变化。在本研究中,我们提出了一种基于门控可微分图像处理(GDIP)模块的YOLOv8改进方法,旨在提升YOLOv8在低照度和雾霾环境中的目标检测性能。
2025-02-12 08:45:00
849
原创 雾霾环境下物体检测的优化方法:结合AOD-PONO-Net去雾与YOLOv8改进
图像去雾技术的目标是恢复被雾霾影响的图像质量,使其尽可能接近正常天气下拍摄的图像。基于物理模型的去雾:这些方法通过假设图像生成模型来去除雾霾,例如基于大气散射模型的去雾方法。深度学习方法:近年来,深度学习方法由于其强大的特征学习能力,在去雾领域表现出色。尤其是基于卷积神经网络(CNN)的去雾网络能够自动学习到图像中的雾霾特征并进行去雾处理。AOD-PONO-Net是AOD-Net(Atmospheric Optics Dehazing Network)的改进版,它主要通过改进网络结构来增强去雾效果。
2025-02-11 01:45:00
576
8
原创 恶劣天气下的目标检测优化:YOLOv8与UnfogNet联合去雾模型的应用
YOLOv8-UnfogNet联合模型的提出为目标检测和图像去雾领域提供了一个新的思路。通过将图像去雾网络和目标检测网络结合,不仅可以提升在恶劣天气下的目标检测精度,还能够为实际应用中的自动驾驶、监控安防等领域带来更强的鲁棒性和适应性。随着去雾技术和目标检测算法的不断发展,我们相信,这种联合方法将在多个领域中获得更加广泛的应用,并为进一步提升图像质量和检测精度做出重要贡献。
2025-02-10 15:30:00
1781
8
原创 自定义MATLAB函数提升代码重用性与可读性的方法与实践
自定义函数是用户根据特定需求编写的MATLAB函数。它们允许程序员将重复的代码块封装为独立的功能模块,以便在不同的场景中重复使用。% 函数说明% 输入参数:% input1 - 描述输入1% input2 - 描述输入2% 输出参数:% output1 - 描述输出1% output2 - 描述输出2% 函数主体% 示例操作% 示例操作end在编写函数之前,需要明确其功能。例如,如果我们需要一个计算矩阵的转置和逆的函数,可以将其定义为。
2025-01-25 18:38:56
688
14
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人