本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!
专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html
文章目录
YOLOv8与SAttention:一种轻量化自注意力检测头在目标检测、分割与姿态估计中的统一应用
引言
YOLOv8作为当前最流行的目标检测模型之一,凭借其高效的性能和优越的实时性,已经在许多实际应用中得到广泛的使用。然而,随着分割、姿态估计(Pose)、目标检测等任务需求的不断增加,YOLOv8的标准检测头已显现出性能瓶颈,尤其是在计算资源有限的情况下,如何提升其准确性和效率成为了研究的一个重要方向。
2024年,HyCTAS(Hybrid Convolutional Transformer Attention Selection)模型提出了一种新型的轻量化自研检测头——SAttention(Selective Attention)。SAttention检测头的设计旨在提升YOLOv8在目标检测、分割和姿态估计任务中的表现,同时优化计算效率,降低计算负担,适应更复杂的应用场景。
本文将详细介绍SAttention检测头的原理、设计思路及其在YOLOv8中的实现方式,并通过代码实例展示如何将该模块集成到YOLOv8