
深度学习
文章平均质量分 84
murphymeng2001
我是一名经验丰富的架构师,毕业于天津大学,获得计算机硕士学位,同时还拥有 深度学习架构师、PMP、NPDP 证书。在过往的工作经历中,我曾在多个项目里担任核心开发角色,专注于后端架构设计。如今,我正积极学习人工智能技术,探索深度学习与数据科学领域。希望能与更多志同道合的朋友一起交流讨论,分享技术心得,共同进步!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于 LangChain + Chroma 实现文档向量化入库(含摘要处理 + RAG 查询):完整实战流程
在构建 AI 应用(如智能问答、知识检索)时,第一步往往是将原始文档转化为向量形式并存入数据库。这通常包含以下流程:加载原始文件(PDF、TXT 等格式)文本切分(控制 chunk 大小以适配模型)使用大模型提取摘要(减少冗余)向量化(生成 embedding 向量)存入向量数据库(如 Chroma)本文将使用 LangChain 框架 + 阿里通义大模型 + Chroma 数据库,完成从原始文档到知识入库再到语义检索的完整闭环。原创 2025-05-25 10:02:59 · 1126 阅读 · 0 评论 -
用PyTorch搭建神经网络实现鸢尾花分类
今天,我们用。原创 2025-02-28 15:10:31 · 809 阅读 · 0 评论 -
全连接神经网络 + ReLU 激活函数:房价预测案例解析
✅。原创 2025-02-27 11:17:44 · 453 阅读 · 0 评论 -
如何用 PyTorch 轻松实现梯度下降
在数学中,梯度描述了一个多变量函数在某一点上变化最快的方向。对于单变量函数 f(x) 来说,其导数 f′(x) 就是函数的变化率;而对于多变量函数来说,其梯度定义为所有偏导数组成的向量:梯度的方向指示函数上升最快的方向,而梯度的反方向则指向函数下降最快的方向。梯度下降的核心思想:利用函数在当前点的梯度信息,沿着下降最快的方向更新参数,逐步找到局部最小值。数学基础:在单变量中,梯度即导数;在多变量中,梯度是所有偏导数组成的向量,指示函数上升最快的方向。PyTorch 实现:通过开启自动求导,通过。原创 2025-02-19 16:20:56 · 910 阅读 · 2 评论