YOLO11解决方案之热力图探索

概述

Ultralytics提供了一系列的解决方案,利用YOLO11解决现实世界的问题,包括物体计数、模糊处理、热力图、安防系统、速度估计、物体追踪等多个方面的应用。

使用YOLO11生成的热力图把复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色调表示较高的强度,冷色调表示较低的值。热力图在可视化复杂的数据模式、相关性和异常情况方面表现出色,为不同领域的数据解读提供了一种直观可视化方法。

热力图有助于说明空间关系,帮助商业智能、环境研究和城市规划等领域进行辅助决策。
热力图在交通中的应用在这里插入图片描述
热力图在零售中的应用在这里插入图片描述

演示代码

Ultralytics提供了CLI和Python例子,展示如何使用热力图解决方案。

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video.mp4")
assert cap.isOpened(), "Error reading video file"

# Video writer
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# 传入区域或直线坐标,可以同时进行物体计数
# region_points = [(20, 400), (1080, 400)]                                      # line points
# region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)]              # rectangle region
# region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)]   # polygon points

# Initialize heatmap object
heatmap = solutions.Heatmap(
    show=True,  # display the output
    model="yolo11n.pt",  # path to the YOLO11 model file
    colormap=cv2.COLORMAP_PARULA,  # 颜色图
    # region=region_points,  # 传入区域或直线坐标,可以同时进行物体计数
    # classes=[0, 2],  # 只对特定类别生成热力图
)

# Process video
while cap.isOpened():
    succes
### YOLOv8 可视化工具和方法 YOLOv8 的可视化功能增强了模型的理解与应用,特别是通过力图和特征图的展示方式[^1]。这些可视化手段不仅帮助开发者更好地理解模型的工作机制,还为优化模型性能提供了有力支持。 #### 使用 `visualize` 参数进行简单可视化 对于希望快速查看检测结果的情况,可以在调用模型预测时设置参数 `visualize=True` 来启用内置的可视化选项。这会自动生成带有边界框标注的结果图像,方便直观评估模型表现: ```python from ultralytics import YOLO model = YOLO("path_to_model.pt") # 加载训练好的模型权重文件 results = model(image_path, visualize=True) # 对指定图片执行推理并开启可视化 ``` 上述代码片段展示了如何加载预训练模型并对单张图片实施目标检测的同时显示结果[^2]。 #### 特征图可视化 除了最终输出外,还可以进一步探索中间层的信息——即所谓的特征图。这对于深入研究网络内部运作非常有用。要实现这一点,可以修改源码中的某些部分来保存特定层次结构下的激活映射,或者利用第三方库如TensorBoard等辅助完成此操作。 为了获取更详细的洞察,建议查阅官方文档或社区资源了解具体步骤以及最佳实践指南。通常情况下,特征图可以通过调整配置文件或编写额外脚本来提取,并将其转换成可读取的形式以便后续处理。 #### 创建自定义可视化脚本 如果默认提供的可视化效果无法满足需求,则可以根据项目特点开发专属解决方案。例如,在 `predict.py` 文件里加入更多定制逻辑,从而获得更加个性化的视觉呈现形式。下面是一个简单的例子说明如何基于现有框架构建个性化绘图流程: ```python import matplotlib.pyplot as plt from ultralytics import YOLO def plot_custom_heatmap(results): fig, ax = plt.subplots() heatmap_data = results[0].plot() # 假设这里返回的是力图数据 im = ax.imshow(heatmap_data) cbar = fig.colorbar(im) plt.show() if __name__ == "__main__": model = YOLO("custom_weights.pt") result = model(input_image, visualize=False) plot_custom_heatmap(result) ``` 这段代码示范了怎样结合 Matplotlib 库绘制出自定义样式的力图表,当然实际应用场景下可能还需要考虑更多的细节因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值