Impala和Hive的关系

Impala和Hive均为基于Hadoop的数据查询工具,Impala适用于实时交互式SQL查询,而Hive则更适合长时间的批处理查询分析。Impala通过优化技术如避免MapReduce开销、使用LLVM生成代码、充分利用硬件指令等方式提升查询速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        Impala是基于Hive的大数据实时分析查询引擎,直接使用Hive的元数据库Metadata,意味着impala元数据都存储在Hive的metastore中。并且impala兼容Hive的sql解析,实现了Hive的SQL语义的子集,功能还在不断的完善中。

与Hive的关系

  Impala 与Hive都是构建在Hadoop之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看Impala与Hive有很多的共同之处,如数据表元数 据、ODBC/JDBC驱动、SQL语法、灵活的文件格式、存储资源池等。Impala与Hive在Hadoop中的关系如下图所示。Hive适合于长时间的批处理查询分析而Impala适合于实时交互式SQL查询,Impala给数据分析人员提供了快速实验、验证想法的大数 据分析工具。可以先使用hive进行数据转换处理,之后使用Impala在Hive处理后的结果数据集上进行快速的数据分析。

 

Impala相对于Hive所使用的优化技术

  • 1、没有使用 MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与 MapReduce相比:Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取 数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免 每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。
  • 2、使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。
  • 3、充分利用可用的硬件指令(SSE4.2)。
  • 4、更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
  • 5、通过选择合适的数据存储格式可以得到最好的性能(Impala支持多种存储格式)。
  • 6、最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。

 

Impala与Hive的异同

  • 数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
  • 元数据:两者使用相同的元数据。
  • SQL解释处理:比较相似都是通过词法分析生成执行计划。

 

  执行计划

  • Hive: 依赖于MapReduce执行框架,执行计划分成 map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会 被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
  • Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的 map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

 

  数据流

  • Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
  • Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

 

  内存使用

  • Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
  • Impala: 在遇到内存放不下数据时,当前版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一 定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。

 

  调度

  • Hive: 任务调度依赖于Hadoop的调度策略。
  • Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器 目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前 Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

 

  容错

  • Hive: 依赖于Hadoop的容错能力。
  • Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败, 再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个 Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不 会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。

 

  适用面

  • Hive: 复杂的批处理查询任务,数据转换任务。
  • Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。
### ImpalaHive的区别联系 #### 区别 Impala Hive 是两种不同的工具,用于处理存储在 Hadoop 集群中的大规模数据集。然而,两者的实现方式技术特性存在显著差异。 - **架构设计** - Hive 构建于 MapReduce 上,适合复杂的批处理查询任务数据转换操作[^2]。 - Impala 则采用 MPP (Massively Parallel Processing) 查询引擎,使用 C++ 开发而非 Java,降低了运行负担;通过 LLVM 编译器即时生成优化后的机器码来加速执行过程[^3]。 - **性能表现** - 对于实时性要求较高的场景,Impala 显示出了明显的优势——由于其独特的架构特点,在内存中直接完成所有计算而不需将中间结果落地至磁盘,并且能够立即启动查询而无需等待MapReduce作业调度完毕。 - **功能支持** - Hive 支持 UDF 用户定义函数等功能扩展,可以灵活应对更多样化的业务需求; - 而 Impala 不完全兼容某些高级 SQL 特性自定义逻辑编写能力有限,因此更适合做简单快速的数据检索分析工作。 #### 协同工作模式 尽管二者各有侧重的应用领域,但在实际应用环境中往往相互补充: - 数据准备阶段通常由 Hive 完成复杂 ETL 流程之后存入表结构内供后续访问; - 接着利用 Impala 的高效读取机制针对已加工好的静态数据集实施交互式的探索研究或是报表展示等活动。 #### 各自的优点缺点 ##### Hive 的优势在于: - 提供强大的ETL能力丰富的SQL语法支持; - 社区活跃度高,插件生态完善; 劣势则是较低的响应速度难以满足亚秒级别的在线请求服务标准. ##### 相较之下,Impala 更擅长之处体现在: - 实现毫秒级延迟下的海量数据扫描; - 较少依赖外部组件使得部署维护成本更低廉; 不过也存在着一些局限性比如缺乏对部分复杂运算的支持以及相对封闭的技术栈限制了灵活性. ```python # Python连接并测试两个系统的简易脚本示例 import pyodbc conn_str_hive = ( 'Driver={ODBC Driver};' 'Host=your_host;' 'Port=port_number;' 'Schema=default;' ) conn_str_impala = conn_str_hive.replace('hive', 'impala') with pyodbc.connect(conn_str_hive) as conn: cursor = conn.cursor() result = cursor.execute("SELECT * FROM test_table LIMIT 10").fetchall() print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值