解决:Could not load dynamic library ‘cudart64_110.dll’; dlerror: cudart64_110.dll not found

文章讲述了在使用TensorFlow时遇到的cudart64_110.dll缺失错误,原因在于contrib方法被弃用。提供了两种解决方法:一是临时补充缺失文件(不推荐),二是安装低版本TensorFlow。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决:Could not load dynamic library ‘cudart64_110.dll’; dlerror: cudart64_110.dll not found

背景

在使用之前的代码时,报错:
W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library ‘cudart64_110.dll’; dlerror: cudart64_110.dll not found
I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import tensorflow.contrib.layers as layers

ModuleNotFoundError: No module named ‘tensorflow.contrib’

报错问题

W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library ‘cudart64_110.dll’; dlerror: cudart64_110.dll not found
I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import tensorflow.contrib.layers as layers
......
ModuleNotFoundError: No module named ‘tensorflow.contrib’

截图如下:
在这里插入图片描述

报错位置代码

报错位置原代码如下:

import tensorflow.contrib.layers as layers

报错翻译

主要报错信息内容翻译如下所示:

W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library ‘cudart64_110.dll’; dlerror: cudart64_110.dll not found
I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
import tensorflow.contrib.layers as layers
......
ModuleNotFoundError: No module named ‘tensorflow.contrib’

翻译:

W tensorflow/stream_executor/platform/default/dso_loader.cc:64] 无法加载动态库“cudart64_110.dll”;dlerror:找不到cudart64_110.dll
I tensorflow/stream_executor/cuda/cudart_stub.cc:29] 如果您的机器上没有设置 GPU,请忽略上面的 cudart dlerror。
将 tensorflow.contrib.layers 导入为层
......
ModuleNotFoundError:没有名为“tensorflow.contrib”的模块

报错原因

经过查阅资料,发现是 TensorFlow 模块2.0中 contrib 方法被弃用,所以找不到对应的模块。

小伙伴们按下面的解决方法即可解决!!!

解决方法

方法1:补充cudart64_110.dll文件(不推荐,纯粹为了解决当前bug,后遗症比较大)

注:此方法纯粹为了解决当前bug,虽然成功解决了当下问题,但后遗症大,后续使用可能会有问题!建议看其他解决方法。

查找 cudart64_110.dll 文件:先在本机目录下查找C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin

如果本机上没有这个文件,可到这里下载:https://www.dll-files.com/cudart64_110.dll.html。下载完毕copy到上面的CUDA目录下。
在这里插入图片描述

也可以将cudart64_101.dll文件复制,将其副本文件重命名为cudart64_110.dll
在这里插入图片描述
在这里插入图片描述
同样处理其他文件,如下图
在这里插入图片描述

方法2:安装低版本tensorflow

pip install tensorflow==1.14.0

方法:3:不降级解决方法

执行下面pip命令:

pip install --upgrade tf_slim

将import tensorflow.contrib.slim as slim改为以下即可:

import tf_slim as slim


今天的分享就到此结束了

欢迎点赞评论关注三连

在这里插入图片描述

### Nginx 文件名逻辑漏洞(CVE-2013-4547) #### 漏洞概述 Nginx 文件名逻辑漏洞(CVE-2013-4547)允许攻击者通过精心构造的 URL 请求来绕过访问控制并读取或执行受限资源。此漏洞的根本原因在于 Nginx 错误地解析了带有特定编码字符的 URL,从而导致文件路径处理不当[^1]。 #### 影响范围 该漏洞影响多个版本的 Nginx,在某些配置下可能导致未经授权的文件访问甚至远程代码执行。具体受影响的版本包括但不限于: - Nginx 1.4.x 版本系列 - Nginx 1.5.x 版本系列 (部分) 当 Web 应用程序部署于上述版本之上时,可能存在潜在风险[^3]。 #### 复现过程 为了验证这一漏洞的存在,可以通过上传一个看似无害但实际上包含恶意 PHP 代码的图片文件 `phpinfo.jpg` 来测试。一旦成功上传,攻击者能够修改 HTTP 请求中的参数使服务器错误解释文件扩展名,进而触发命令注入行为[^4]。 ```bash curl -X POST http://example.com/upload.php \ -F "file=@/path/to/phpinfo.jpg" ``` 随后发送如下请求可尝试利用漏洞: ```http GET /uploads/phpinfo.jpg%00.php?cmd=id HTTP/1.1 Host: example.com ``` 如果存在漏洞,则返回的结果会显示当前用户的 ID 信息。 #### 安全修复措施 针对 CVE-2013-4547 的防护手段主要包括以下几个方面: - **升级至最新稳定版**:官方已发布更新解决此问题,建议立即应用最新的安全补丁以消除隐患[^2]。 - **手动修补源码**:对于无法即时升级的情况,可以从官方网站下载专门为此漏洞准备的安全补丁,并按照指引完成编译安装流程。 - **加强输入校验**:无论何时都应严格过滤用户提交的数据,特别是涉及文件操作的部分,防止非法字符进入内部处理环节。 - **启用 WAF 防护**:Web Application Firewall 能够识别异常模式并阻止可疑流量到达应用程序层面上游位置。 综上所述,及时采取适当行动可以有效降低遭受此类攻击的风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ninghes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值