few-shot-gnn代码阅读

本文深入探讨了few-shot学习中的关键组件——EmbeddingOmniglot和MetricNN。在训练过程中,它分为两个网络层次:一是负责特征表示的Embedding层,二是用于计算样本间相似性的GNN度量层。通过对这两个网络的理解,可以更好地掌握few-shot学习的机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练

分为两个网络:
Embedding层和GNN度量层

EmbeddingOmniglot

omniglot
EmbeddingOmniglot(
  (conv1): Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), bias=False)
  (bn4): BatchNorm2d(64, eps=1e-05, momentum=0.1,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值