yolov5训练3 train代码笔记

train: Scanning /kaggle/working/datasets/coco128/labels/train2017... 126 images,
train: New cache created: /kaggle/working/datasets/coco128/labels/train2017.cache
train: Caching images (0.1GB ram): 100%|██████████| 128/128 [00:00<00:00, 864.64
val: Scanning /kaggle/working/datasets/coco128/labels/train2017.cache... 126 ima
val: Caching images (0.1GB ram): 100%|██████████| 128/128 [00:00<00:00, 351.82it
It seems you're working with a dataset (possibly COCO128) and training a model, perhaps using YOLO or a similar framework. The log output indicates that the training process is scanning label files, caching images for faster access during training, and handling both training and validation data.

Here's a breakdown of what the logs suggest:
Log Explanation:

深色版本

train: Scanning /kaggle/working/datasets/coco128/labels/train2017... 126 images,

    The training process is scanning the label files in the train2017 directory.
    It found 126 image-label pairs.

深色版本

train: New cache created: /kaggle/working/datasets/coco128/labels/train2017.cache

    A new .cache file has been created to speed up future training sessions by storing preprocessed label data.

深色版本

train: Caching images (0.1GB ram): 100%|██████████| 128/128 [00:00<00:00, 864.64it/s]

    All 128 images are being cached into memory (RAM), which speeds up data loading during training.
    This was done at a rate of ~864 images per second.

深色版本

val: Scanning /kaggle/working/datasets/coco128/labels/train2017.cache... 126 ima

    The validation phase is reading from the same cached label file (train2017.cache), possibly because no separate validation set is defined, or it’s reusing the training data for validation.

深色版本

val: Caching images (0.1GB ram): 100%|██████████| 128/128 [00:00<00:00, 351.82it/s]

    Similar to the training phase, all 128 images are being cached for validation.

Possible Issues or Notes:

    Validation Set Issue?
        You might be accidentally using the training labels for validation (val: phase is reading from train2017.cache). Typically, validation should use a separate folder like val2017.
        If this is unintentional, check your configuration file or dataset setup.

    Caching Speed Difference
        Training cached at ~864 images/sec, while validation only ~351 images/sec. This could be due to different loading methods or system load differences.

    Memory Usage
        Image caching uses ~0.1 GB RAM. That's low, suggesting either small image sizes or that only labels are being cached.

Suggestions:

    Make sure your validation set is correctly separated from the training set.
    If you're using YOLOv5 or YOLOv8, double-check your data.yaml file to ensure correct paths for train/val splits.
    If you’re on Kaggle, remember that memory is limited—image caching helps but may not scale well for large datasets.

Would you like help debugging this further or modifying your training configuration?

 

 

 

# Train
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks
你提供的代码片段:

python
深色版本

# Train
if not opt.evolve:
    train(opt.hyp, opt, device, callbacks)

是 YOLOv5 或 YOLOv8 等目标检测项目中的一部分,通常出现在 train.py 文件的末尾。这段代码的作用是根据命令行参数决定是否进行模型训练。
🔍 逐行解释:
```python
Train

深色版本

这是一个注释,说明接下来的是“训练”部分的逻辑。

#### ```python
if not opt.evolve:

    opt.evolve 是一个布尔值(True/False),由命令行参数控制。
    如果你没有使用 --evolve 参数运行脚本,就会执行下面的 train(...) 函数。
    --evolve 的作用是启用“超参数进化(Hyperparameter Evolution)”,即通过遗传算法自动优化 hyp.yaml 中的训练超参数。

```python

train(opt.hyp, opt, device, callbacks)

深色版本

这是调用训练函数,传入了以下参数:

| 参数名       | 类型 / 含义 |
|--------------|-------------|
| `opt.hyp`    | dict,从 `hyp.yaml` 加载的超参数(学习率、动量、数据增强设置等) |
| `opt`        | Namespace,包含所有命令行参数(如 batch size、epoch 数量、数据路径等) |
| `device`     | torch.device,表示当前使用的设备('cpu' 或 'cuda:0' 等) |
| `callbacks`  | 回调函数集合(用于日志记录、保存模型等扩展功能) |

---

### 📌 示例命令(不启用进化训练):

```bash
python train.py --img 640 --batch 16 --epochs 50 --data coco128.yaml --weights yolov5s.pt

这个命令不会触发 --evolve,所以会进入 train(...) 执行常规训练流程。
🧬 如果你想使用进化训练:

bash
深色版本

python train.py --evolve --data coco128.yaml --weights yolov5s.pt

这将跳过 train() 直接进入 evolve.py 定义的超参搜索流程。

 

 

你提到的代码片段:

python
深色版本

exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else []

以及解释:

    如果 anchors 是通过 config/hyp 提供,并且我们不是在恢复训练(resume),就跳过从 checkpoint 中加载 anchors。

🔍 这是在做什么?

这行代码的作用是:决定是否要跳过从预训练权重中加载 anchor 参数。
📌 什么是 Anchor?

在 YOLO 系列目标检测模型中,"anchor" 指的是预设的一组边界框尺寸(width, height),用来辅助模型预测物体的位置。这些 anchor 是根据训练数据集中的目标尺寸聚类得到的。
✅ 条件分析

python
深色版本

(cfg or hyp.get("anchors")) and not resume

这个条件的意思是:

    如果当前使用了自定义配置文件 cfg 或者在超参数 hyp 中指定了 anchors
    并且
    当前不是在 继续训练(resume)

👉 那么就不要从 checkpoint 中加载 anchor 相关的参数。
🧠 为什么要排除(exclude)anchor?

因为:

    Anchor 应该和当前数据集匹配

    Checkpoint 中保存的 anchor 是基于它训练时的数据集计算出来的。

    如果你自己提供了 anchor(比如针对你的数据集重新设置)

    就不应该用 checkpoint 的 anchor,否则会冲突。

    恢复训练时除外

    如果你在继续上次的训练(resume),说明之前已经开始训练并保存了 anchor 设置,这时候就应该保留原来的状态。

🧹 示例场景
✅ 场景一:加载 COCO 预训练模型来训练自己的数据集

    你有一个自己的数据集
    使用了自定义的 hyp['anchors']
    不是从上次训练中断的地方继续(即不 resume)

👉 此时应该 exclude = ["anchor"],避免把 COCO 数据集的 anchor 加载进来。
❌ 场景二:继续训练之前中断的模型

    你是从之前的 checkpoint 恢复训练
    那个 checkpoint 已经是你自己数据集训练出的模型

👉 此时不 exclude,可以正常加载所有参数,包括 anchor。

 

这段代码是用来 冻结模型中的某些层(参数),使其在训练过程中不更新梯度,常用于迁移学习中“冻结主干网络(backbone)”,只训练头部(head)或其他部分。
🧊 代码解析

python
深色版本

freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze

✅ 这行代码的作用:

构造出要冻结的层名列表,格式为 "model.数字.",例如:["model.0.", "model.1.", "model.2."]。
🔍 解释一下这个表达式:

    freeze 是一个输入参数,可以是:
        单个整数,比如 [10],表示冻结前 10 层。
        或者是一个列表,比如 [0, 1, 2, 3],表示冻结第 0~3 层。

    如果 len(freeze) > 1,说明用户传入的是具体层号列表(如 [0, 2, 4]),就直接使用。

    否则(即长度为 1),就用 range(freeze[0]) 生成从 0 到 freeze[0]-1 的所有层编号。

📌 示例:

    若 freeze = [10] → 冻结前 10 层(即 0 到 9)
    若 freeze = [0, 1, 2] → 冻结第 0、1、2 层

python
深色版本

for k, v in model.named_parameters():
    v.requires_grad = True  # train all layers

✅ 默认开启所有参数的梯度计算(可训练)

    遍历模型的所有参数(named_parameters 返回参数名和参数本身)
    先设置所有参数都可训练(requires_grad=True)

python
深色版本

    if any(x in k for x in freeze):
        LOGGER.info(f"freezing {k}")
        v.requires_grad = False

✅ 检查当前参数是否属于冻结层

    如果参数名 k 包含任意一个冻结前缀(如 "model.0."),则冻结它:
        设置 requires_grad = False
        并记录日志:freezing model.xxx.weight

📌 总结逻辑流程:
步骤	操作
1	根据用户指定的 freeze 参数构建冻结层前缀列表
2	遍历模型所有参数,默认设为可训练
3	对匹配到冻结前缀的参数,设置为不可训练(冻结)
💡 使用场景举例
场景一:冻结 YOLOv5 的骨干网络(CSPDarknet)

你只想训练检测头(head),可以这样设置:

python
深色版本

freeze = [10]  # 冻结前 10 层(通常是 backbone)

场景二:冻结特定层(如第 0、2、4 层)

python
深色版本

freeze = [0, 2, 4]

🧪 补充说明

    冻结后,这些层不会反向传播更新,节省显存和时间。
    可以先冻结 backbone 训练 head,再解冻全部进行微调。
    v.register_hook(...) 是调试用的(将 NaN 替换为 0),但被注释掉了,因为可能影响训练稳定性。

参考目标检测---教你利用yolov5训练自己的目标检测模型_目标检测 教你利用-CSDN博客 

 

 参考【YOLO系列】YOLOv5超详细解读(源码详解+入门实践+改进)-CSDN博客

 

        if RANK in {-1, 0}:
            # mAP
            callbacks.run("on_train_epoch_end", epoch=epoch)
            ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = validate.run(
                    data_dict,
                    batch_size=batch_size // WORLD_SIZE * 2,
                    imgsz=imgsz,
                    half=amp,
                    model=ema.ema,
                    single_cls=single_cls,
                    dataloader=val_loader,
                    save_dir=save_dir,
                    plots=False,
                    callbacks=callbacks,
                    compute_loss=compute_loss,
                )

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    "epoch": epoch,
                    "best_fitness": best_fitness,
                    "model": deepcopy(de_parallel(model)).half(),
                    "ema": deepcopy(ema.ema).half(),
                    "updates": ema.updates,
                    "optimizer": optimizer.state_dict(),
                    "opt": vars(opt),
                    "git": GIT_INFO,  # {remote, branch, commit} if a git repo
                    "date": datetime.now().isoformat(),
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f"epoch{epoch}.pt")
                del ckpt
                callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值