时间序列分析及应用 第三章 确定趋势

1.常数均值的估计

   扰动X_t期望为0  

 

非平稳序列 例:随机游动

       

均值估计量的方差实际上随样本容量n的增加而增大 这样的估计是不可接受的

2.回归估计

1)最小二乘

   

2)周期性 季节性

例 某城市月平均气温:对每年的这个月的数据 取平均

3)余弦趋势

可以简单建模为

  

3.回归评估

比较季节均值模型和余弦趋势模型

12个月所以f=12  估算1月份,由正余弦的正交 独立性

比较白噪声 以及 只有\rho_1 \neq 0 的情况

余弦模型 比季节均值模型 参数估计的方差小很多

  

   

样本自相关函数ACF   对于滞后k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值