1.常数均值的估计
扰动
期望为0
非平稳序列 例:随机游动
均值估计量的方差实际上随样本容量n的增加而增大 这样的估计是不可接受的
2.回归估计
1)最小二乘
2)周期性 季节性
例 某城市月平均气温:对每年的这个月的数据 取平均
3)余弦趋势
由
可以简单建模为
3.回归评估
比较季节均值模型和余弦趋势模型
12个月所以f=12 估算1月份,由正余弦的正交 独立性
比较白噪声 以及 只有 的情况
余弦模型 比季节均值模型 参数估计的方差小很多