时间序列分析及应用 第五章 非平稳时间序列模型 + ARIMA

1.通过差分平稳化

        

否则 

e系数指数爆炸。   需要对序列进行差分操作,平稳化。

例1:   

例2:

例3:  

2.ARIMA模型

  为 ARMA(p,q)过程

IMA(1,1)模型      

IMA(2,2)模型  

ARI(1,1)模型   

特征方程比较系数       

3.ARIMA模型中的常数项

若W均值不为0 而为μ。两种写法 每一项-μ  或在总体常数系数上+θ

可化简为    

 

 对于一阶差分的情况 代入迭代后

即可写成一个IMA(1,1)+一个线性项

推广到d阶差分 可化为

正数数据 可做幂变换后更相对稳定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值