https://www.lamda.nju.edu.cn/chengq/optfall24/slides/Lecture_2.pdf
1.norms范数
1.内积
2.欧式范数/2-范数
3.柯西-施瓦兹不等式
4.余弦 向量夹角公式
5.矩阵内积 相应位置相乘迹 主对角线元素之和
6.矩阵弗罗贝尼乌斯范数
7.两个n*n对称矩阵
8.范数的四个条件 1) 2)
3) 4)
9.所有范数≤1的向量构成 单位球 unit ball 对称性 、凸性、闭、有界、内部非空
10.p范数
11.1范数 绝对值之和
12.无穷范数
13.基于对称正定矩阵P的2范数
14.范数等价性 任意a\b范数 都可以找到α和β使
任意范数都可以 找到P-quadratic norm使
15.算子范数
b范数对应单位球 经过X拉伸的a范数上确界
二范数为 最大奇异值(特征值开根号)
16.dual norm对偶范数 向量z与原向量球 最大内积
1)
2) p与1/p 范数互为对偶 3)对偶的对偶为本身
17.interior point内点
所有内点的集合表示为C的内部 int C 若int C=C 则C为open set开集
18. 补集为开集 -> closed set 闭集 补集的内部的补集 -> closure 闭包
闭包去掉内部 -> boundary 边界 sup 上确界 inf 下确界
19.函数连续性
2.derivative导数
f在x处可微 Df(x)为导
一阶近似
m维(m列 ) -> n维(n行
) 第i行j列 n*m 雅可比矩阵 Jacobian
梯度gradient 为导数的转置
例:
链式法则
例1:
例2:
例3:
3.线性代数
1.range值域 右乘 列线性组合
2.nullspace零空间 线性方程组的解
3.正交补 与V中所有向量都正交
4.
5.正定
特征值均>0
负定
特征值均<0
半正定
特征值均≥0
6.SVD 奇异值分解
7.伪逆
舒尔补(Schur Complement)