NJU 凸优化导论(2)数学基础

https://www.lamda.nju.edu.cn/chengq/optfall24/slides/Lecture_2.pdf

1.norms范数

1.内积

2.欧式范数/2-范数

3.柯西-施瓦兹不等式

4.余弦 向量夹角公式

5.矩阵内积 相应位置相乘迹 主对角线元素之和

6.矩阵弗罗贝尼乌斯范数

7.两个n*n对称矩阵

8.范数的四个条件  1)    2)

3)       4)

9.所有范数≤1的向量构成 单位球 unit ball   对称性 、凸性、闭、有界、内部非空

10.p范数

11.1范数 绝对值之和

12.无穷范数

13.基于对称正定矩阵P的2范数 

14.范数等价性  任意a\b范数 都可以找到α和β使 

任意范数都可以 找到P-quadratic norm使 

15.算子范数 b范数对应单位球 经过X拉伸的a范数上确界

 二范数为 最大奇异值(特征值开根号)

16.dual norm对偶范数  向量z与原向量球 最大内积

1)

2) p与1/p 范数互为对偶     3)对偶的对偶为本身

17.interior point内点 

所有内点的集合表示为C的内部 int C       int C=C 则C为open set开集

18. 补集为开集 -> closed set 闭集     补集的内部的补集 -> closure 闭包

闭包去掉内部 -> boundary 边界        sup 上确界     inf 下确界

19.函数连续性

2.derivative导数

f在x处可微  Df(x)为导

一阶近似 

m维(m列 ) -> n维(n行 )  第i行j列     n*m 雅可比矩阵 Jacobian

梯度gradient 为导数的转置

例:  

链式法则  

例1:      

例2:     

例3:

3.线性代数

1.range值域 右乘 列线性组合 

2.nullspace零空间 线性方程组的解 

3.正交补 与V中所有向量都正交 

4.

 

  

5.正定       特征值均>0

负定     特征值均<0

半正定    特征值均≥0

6.SVD 奇异值分解

7.伪逆    

舒尔补(Schur Complement)

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值