NJU 凸优化导论(3) Convex Sets 凸集(上)仿射集、凸集、保持凸性的运算

https://www.lamda.nju.edu.cn/chengq/optfall24/slides/Lecture_3.pdf

1.Affine and Convex Sets:仿射集与凸集

1.Lines x1与x2连线   时为线段

2.仿射集

k个点则为仿射组合 

3.subspace子空间 对加法和数乘封闭 

仿射集由子空间平移得到。 子空间是偏移量为0的仿射集。

4.线性方程组的解集是仿射集,每个仿射集都能表示为线性方程组的解集

5.Affine hull 仿射包 最小的包含C的仿射集

6. 凸集  和为1&系数非负

  

  凸包 

7.锥  仅正向延伸

凸锥   加&正向延伸

锥组合

锥包 

8.小结:Affine(和为1) Convex(非负,和为1) Cone(非负)   仿射集一定是凸集。

都有   本身定义、combination组合(k个点组合)、hull包(集合的最小包围)

直线是仿射集  线段、射线是凸集但不是仿射集。 过原点的直线、原点为起点的射线是凸锥。

9.Hyperplanes超平面

   正交补平移

Halfspaces 半平面 把 = 变成 ≤

10.Euclidean Balls欧式球的三种表示

2-范数表示 内积表示

11.Ellipsoids椭球        

12. 范数球 证明凸

    证明凸

13.  有限数量的不等式(半平面)和等式(超平面) 

14.单纯形 凸包 非负&和为1。  维度为k,这k个点仿射独立。

2.Operations That Preserve Convexity:保持凸性的运算

1.交集

多项式可看做有限个半平面和超平面的交集。

例:求和写成内积,每个t对应一个集合   S为这些集合的交集

2.仿射函数     正逆运算:

为凸集。

3.Perspective function透视函数

4.线性分式函数(Linear-Fractional Functions)仿射函数与透视函数组合

   

 g仿射函数后的凸集 输入到P透视函数

小结:仿射函数 透视函数 分式线性函数  正过来 逆过来 均有保凸性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值