https://www.lamda.nju.edu.cn/chengq/optfall24/slides/Lecture_3.pdf
1.Affine and Convex Sets:仿射集与凸集
1.Lines x1与x2连线
时为线段
2.仿射集
k个点则为仿射组合
3.subspace子空间 对加法和数乘封闭
仿射集由子空间平移得到。 子空间是偏移量为0的仿射集。
4.线性方程组的解集是仿射集,每个仿射集都能表示为线性方程组的解集
5.Affine hull 仿射包 最小的包含C的仿射集
6. 凸集 和为1&系数非负
凸包
7.锥
仅正向延伸
凸锥
加&正向延伸
锥组合
锥包
8.小结:Affine(和为1) Convex(非负,和为1) Cone(非负) 仿射集一定是凸集。
都有 本身定义、combination组合(k个点组合)、hull包(集合的最小包围)
直线是仿射集 线段、射线是凸集但不是仿射集。 过原点的直线、原点为起点的射线是凸锥。
9.Hyperplanes超平面
正交补平移
Halfspaces 半平面 把 = 变成 ≤
10.Euclidean Balls欧式球的三种表示
2-范数表示
内积表示
11.Ellipsoids椭球
12. 范数球
证明凸
证明凸
13. 有限数量的不等式(半平面)和等式(超平面)
14.单纯形 凸包 非负&和为1。 维度为k,这k个点仿射独立。
2.Operations That Preserve Convexity:保持凸性的运算
1.交集
多项式可看做有限个半平面和超平面的交集。
例:求和写成内积,每个t对应一个集合 S为这些集合的交集
2.仿射函数
正逆运算:
为凸集。
3.Perspective function透视函数
4.线性分式函数(Linear-Fractional Functions)仿射函数与透视函数组合
g仿射函数后的凸集 输入到P透视函数
小结:仿射函数 透视函数 分式线性函数 正过来 逆过来 均有保凸性