NJU 凸优化导论(6) Convex Optimization Problems 凸优化问题(1)

https://www.lamda.nju.edu.cn/chengq/optfall24/slides/Lecture_6.pdf

目录

Optimization Problems:优化问题

1. Basic Terminology:基本术语

2. Equivalent Problems:等价问题

2.1 变量替换

2.2 松弛变量

2.3 消除等式约束   

2.4 对部分变量求最值

2.5 隐显示条件改写

2.6 上图形式

3. Problem Descriptions:问题描述

Convex Optimization:凸优化

1.Standard Form:标准形式

2.Local and Global Optima:局部最优与全局最优

3. An Optimality Criterion:一个最优性准则

3.1 充要性证明

3.2 无约束问题

3.3 仅含等式约束的问题   

3.4 非负域

4. Equivalent Convex Problems:等价凸问题

5. Quasiconvex Optimization:拟凸优化


Optimization Problems:优化问题

1. Basic Terminology:基本术语

 

 

  

  

   

  

 

 

    

2. Equivalent Problems:等价问题

2.1 变量替换

  

 

2.2 松弛变量

2.3 消除等式约束   

  

  

2.4 对部分变量求最值

2.5 隐显示条件改写

把约束塞到定义域

把隐藏约束拿出来

             

2.6 上图形式

3. Problem Descriptions:问题描述

Convex Optimization:凸优化

1.Standard Form:标准形式

 

2.Local and Global Optima:局部最优与全局最优

3. An Optimality Criterion:一个最优性准则

3.1 等价条件 充要性证明

 

    

3.2 无约束问题

 

3.3 仅含等式约束的问题   

 

3.4 非负域

4. Equivalent Convex Problems:等价凸问题

消除等式约束

引入等式约束

为线性不等式 引入松弛变量 (引入后仍然能保持等式是仿射函数)

上图形式

对凸函数的部分变量求最小值能保持凸性:若上面三函数都凸   下面的等价问题则是凸优化问题

5. Quasiconvex Optimization:拟凸优化 变形+二分求解

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值