NJU 模式识别与计算机视觉(2)特征归一化+Fisher线性判别 FLD

目录

一、特征归一化

1)线性回归

2)规范化

二、Fisher线性判别 FLD

1)需要用到的统计变量

2)推导过程

3)等等,我们有一条捷径!

4)适用于多类的FLD


一、特征归一化

1)线性回归

       

2)规范化

        

         

   

  

    

    

二、Fisher线性判别 FLD

PCA适用于 无监督提取特征时投影 但会把两类数据混在一起
FLD要把 正负类的投影值分隔比较远   (两类均值之间的距离比两个标准差都要小)

1)需要用到的统计变量

   

 

  

 

2)推导过程

    

3)等等,我们有一条捷径!

  

4)适用于多类的FLD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值