目录
一、特征归一化
1)线性回归
2)规范化
二、Fisher线性判别 FLD
PCA适用于 无监督提取特征时投影 但会把两类数据混在一起
FLD要把 正负类的投影值分隔比较远 (两类均值之间的距离比两个标准差都要小)
1)需要用到的统计变量
2)推导过程
3)等等,我们有一条捷径!
目录
PCA适用于 无监督提取特征时投影 但会把两类数据混在一起
FLD要把 正负类的投影值分隔比较远 (两类均值之间的距离比两个标准差都要小)