深度学习之美——M-P神经元模型

M-P神经元模型是什么

简单来说,神经网络是一种模仿动物神经网络行为特征,进行分布式并行处理信息的算法模型。

人工神经网络(ANN)的性能好坏,高度依赖神经系统的复杂程度,他通过调整内部大量“简单单元”之间的互连权重,从而达到处理信息的目的,并具有自学习和自适应的能力。

“简单单元”就是神经网络中的最基本元素——神经元。

M-P神经元模型是模仿大脑神经元的最早示例。

在M-P神经元模型中,神经元接收来自n个其他神经元传递过来的输入信号,再将接收到的输入信号按照某种权重叠加起来,叠加起来的刺激强度S可用公式S=\sum_{i=1}^{n}w_{i}x_{i}来表示。得到S后,好要与当前神经元的阈值进行比较,然后通过激活函数向外表达输出。

M-P神经元模型可用公式y = f(\sum_{i=1}^{n}w_{i}x_{i} - \theta )来表示,其中\theta是所谓的“阈值”,f就是激活函数

模型背后的人和事

罗素等人在书中论述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零幺_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值