M-P神经元模型是什么
简单来说,神经网络是一种模仿动物神经网络行为特征,进行分布式并行处理信息的算法模型。
人工神经网络(ANN)的性能好坏,高度依赖神经系统的复杂程度,他通过调整内部大量“简单单元”之间的互连权重,从而达到处理信息的目的,并具有自学习和自适应的能力。
“简单单元”就是神经网络中的最基本元素——神经元。
M-P神经元模型是模仿大脑神经元的最早示例。
在M-P神经元模型中,神经元接收来自n个其他神经元传递过来的输入信号,再将接收到的输入信号按照某种权重叠加起来,叠加起来的刺激强度S可用公式来表示。得到S后,好要与当前神经元的阈值进行比较,然后通过激活函数向外表达输出。
M-P神经元模型可用公式来表示,其中
是所谓的“阈值”,f就是激活函数
模型背后的人和事
罗素等人在书中论述