背景介绍
在目标检测领域的快速发展背景下,实时目标检测面临着一个基本挑战:如何在保持高效推理的同时,提高对不同尺度目标的检测性能。这一挑战推动了研究者们不断探索新的网络架构和特征表示方法。
YOLO-MS 作为一种创新的实时目标检测模型,旨在解决这一难题。它通过引入 多尺度构建块(MS-Block) 和 异构内核选择(HKS)协议 ,显著增强了模型的多尺度特征表示能力。这种设计使得YOLO-MS在保持高效推理的同时,能够更好地捕捉不同尺度的语义信息,从而提高对不同尺寸目标的检测性能。
核心创新
YOLO-MS的核心创新体现在两个方面: 多尺度构建块(MS-Block)设计 和 异构内核选择(HKS)协议 。这些创新点共同构成了YOLO-MS在实时目标检测领域的优势。
-
MS-Block设计 是YOLO-MS的一大亮点。受Res2Net启发,MS-Block采用了分层特征融合策略,通过将输入特征分割成多个组,并在每个组中应用具有不同Kernel大小的Inverted Bottleneck Block,有效编码了不同尺度的特征。这种设计使得模型能够更好地捕捉和处理多尺度目标信息,从而提高检测性能。
MS-Block的具体结构如下:
-
输入特征分割 :将输入特征X沿