[2025CVPR]STAtten:脉冲时空注意力Transformer

一、论文结构与核心问题

研究背景​:
脉冲神经网络(SNNs)因生物启发的低功耗特性备受关注,但传统卷积架构面临二进制脉冲导致的信息损失问题。脉冲Transformer虽引入自注意力机制,却存在两大局限:

  1. 时空割裂​:现有方法(如Spikformer)仅关注空间注意力,忽略时间维度关联
  2. 计算效率低​:传统时空注意力需O(T²N²D)复杂度,难以部署

解决方案​:
提出脉冲时空注意力Transformer(STAtten)​​:

  • 分块计算​:将时间轴划分为局部块处理
  • 无Softmax设计​:利用脉冲二值特性简化运算
  • 即插即用​:兼容主流脉冲Transformer架构
  • 性能突破​:CIFAR100-DVS数据集达83.9%准确率(提升1.0%)

二、核心创新点解析
1. 分块时空注
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值