
Agent
文章平均质量分 91
Agent
程序员查理
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI Agent(12):开发与部署实践
本文探讨了AI Agent系统的开发与部署实践,强调了其与传统软件系统相比的独特挑战,如模型复杂性、系统集成、行为评估和安全性要求。文章详细介绍了主流AI Agent开发框架(如LangChain、AutoGPT、Microsoft Semantic Kernel、LlamaIndex等)及其核心特性、适用场景和最新发展。此外,还讨论了开发环境配置、调试与测试工具、版本控制与协作工具等关键开发工具与环境设置。为技术团队提供了从设计到运维的全流程指南,帮助其高效、可靠地开发和部署AI Agent系统。原创 2025-05-13 13:55:54 · 1106 阅读 · 0 评论 -
AI Agent(11):垂直行业应用
本文探讨了AI Agent在金融、医疗健康、制造业和零售与电商四个垂直行业的应用,重点分析了金融行业的应用场景、技术实现及典型案例。AI Agent通过结合行业专业知识与通用AI能力,为金融行业提供了智能投资顾问、风险管理、客户服务和交易执行等领域的创新解决方案。关键技术包括金融知识图谱、数据分析与预测、合规与安全机制以及个性化金融服务。典型案例如摩根大通的LOXM、美国银行的Erica、平安保险的智能理赔机器人和Betterment的智能投资顾问,展示了AI Agent在提升效率、优化决策和降低成本方面的原创 2025-05-12 21:41:22 · 869 阅读 · 0 评论 -
AI Agent(10):个人助手应用
在人工智能快速发展的今天,AI Agent作为一种新型智能体,正在深刻改变我们的日常生活方式。继企业应用场景之后,个人助手应用成为AI Agent最贴近普通用户、最具普及价值的领域之一。从提升工作效率到管理健康生活,从辅助学习教育到丰富娱乐体验,AI个人助手正在各个方面为用户提供前所未有的智能支持。原创 2025-05-11 19:35:49 · 675 阅读 · 0 评论 -
AI Agent(9):企业应用场景
企业是AI Agent技术最重要的应用领域之一。随着技术的成熟和商业化进程的加速,越来越多的企业开始将AI Agent应用于各种业务场景,从客户服务到业务流程自动化,从数据分析到知识管理。这些应用不仅提高了效率,降低了成本,还创造了新的业务模式和竞争优势。原创 2025-05-11 19:31:29 · 1031 阅读 · 0 评论 -
AI Agent(8):安全与伦理考量
AI Agent作为具有自主性的智能系统,面临着多重安全风险和挑战,涵盖技术、行为、社会及隐私保护等多个层面。技术安全风险包括提示注入攻击、数据投毒、对抗性攻击和系统集成漏洞,这些威胁可能导致系统被操控或数据泄露。行为安全风险涉及目标错位、自主性风险、偏见与歧视以及操纵与欺骗,这些问题可能引发意外后果或社会不公。社会与系统性风险则包括失业、权力集中、安全稳定性挑战等,需要多方协作应对。为管理这些风险,需采取综合策略,如安全设计原则、技术防护措施、风险评估框架和安全文化建设。此外,AI Agent在处理大量数原创 2025-05-10 11:22:15 · 862 阅读 · 0 评论 -
AI Agent(7):Agent规划与决策能力
规划与决策能力是AI Agent自主性和智能性的核心体现。通过任务分解与规划算法,Agent能够将复杂目标转化为可执行的步骤序列;通过决策树与决策过程,Agent能够在多个选项中做出明智的选择;通过不确定性处理与风险评估,Agent能够在不完美信息下管理风险;通过自我修正与反馈循环机制,Agent能够不断学习和改进。原创 2025-05-09 14:17:21 · 940 阅读 · 0 评论 -
AI Agent(6):Agent记忆与学习能力
关键信息提取:从冗长内容中提取关键信息渐进式压缩:随着时间推移增加压缩率层次化摘要:创建多层次摘要,按需展开语义压缩:保留语义信息的同时减少token使用多模态压缩:针对不同模态内容的专门压缩方法记忆压缩需要平衡信息保留和存储效率,确保压缩后的记忆仍然有用。记忆与学习能力是Agent从简单工具向真正智能助手演进的关键。通过短期记忆与长期记忆的有效实现、知识库与向量数据库的深度集成、增量学习与适应性能力的培养,以及记忆管理的最佳实践,Agent能够提供个性化、连贯且不断进化的服务体验。原创 2025-05-08 10:49:33 · 834 阅读 · 0 评论 -
AI Agent(5):多Agent协作系统
多Agent系统(Multi-Agent System, MAS)是由多个智能Agent组成的网络,这些Agent相互交互、协作或竞争,共同解决单一Agent难以处理的复杂问题。在这个系统中,每个Agent都是一个独立的智能体,具有自己的知识、能力和目标,但通过协作可以实现整体能力的提升。多Agent协作系统代表了AI Agent技术的重要发展方向,通过组合多个专业化Agent的能力,可以解决单一Agent难以应对的复杂问题。原创 2025-05-07 11:14:52 · 1249 阅读 · 0 评论 -
AI Agent(4):Agent核心技术栈
本篇文章将深入探讨支撑AI Agent运行的核心技术栈,这些技术共同构成了现代AI Agent的技术基础。我们将重点分析大语言模型(LLM)技术、工具使用能力的实现方式、记忆与上下文管理技术,以及规划与推理技术。通过本文,读者将了解这些技术的工作原理、最新进展以及在AI Agent中的应用方式。原创 2025-05-06 10:57:37 · 798 阅读 · 0 评论 -
AI Agent(3):Agent分类与类型
本文从功能复杂度、自主程度、交互方式和应用领域四个维度对AI Agent进行了分类,并探讨了不同类型Agent的特点、优势和应用场景。这些分类维度不是孤立的,而是相互交织、相互影响的。理解AI Agent的分类与类型,有助于我们更好地选择、设计和应用适合特定场景的Agent解决方案。随着技术的不断进步,AI Agent的类型将更加多样化,分类边界也将更加模糊,但这种多样性恰恰体现了AI Agent技术的丰富性和适应性。原创 2025-05-05 11:01:48 · 916 阅读 · 0 评论 -
AI Agent(2):Agent技术架构
AI Agent的技术架构是一个复杂而快速发展的领域。从基础组件到整体架构模式,从LLM的核心角色到感知-思考-行动循环的实现,现代AI Agent系统融合了多种先进技术,为用户提供强大而灵活的智能服务。随着技术的不断进步,AI Agent的架构也将持续演化,更好地平衡自主性与可控性、能力与效率、通用性与专业性。理解这些架构原理和设计模式,对于开发和应用AI Agent至关重要。在下一篇文章中,我们将深入探讨AI Agent的分类与类型,帮助读者更全面地了解不同场景下的Agent应用。原创 2025-05-01 18:13:37 · 935 阅读 · 0 评论 -
AI Agent(1):概念与定义
AI Agent(人工智能代理)是一种能够感知环境、做出决策并采取行动以实现特定目标的智能系统。与传统的AI应用不同,Agent具有一定程度的自主性,能够在没有人类直接干预的情况下,根据环境变化调整自己的行为。感知模块:负责接收和处理来自环境的信息认知模块:分析信息、做出判断和决策执行模块:将决策转化为具体行动记忆模块:存储历史信息和经验,用于未来决策学习模块:通过经验不断改进自身能力环境 → [感知模块] → [认知模块] → [执行模块] → 行动 → 环境↑ ↑ ↑| | |原创 2025-04-30 15:15:34 · 1038 阅读 · 0 评论