引言
PDF文件常常包含重要的非结构化数据,是不可忽视的信息来源。然而,由于其复杂度和长度,直接将它们输入到语言模型中并不现实。在本教程中,我们将构建一个系统,能够从PDF中提取信息并回答问题。我们将使用文档加载器将PDF转换为适合语言模型处理的格式,并构建一个检索增强生成(RAG)管道,能够引用来源材料。
主要内容
文档加载
首先,我们需要选择一个PDF进行加载。以下代码示例将展示如何使用LangChain的内置文档加载器,利用pypdf
库从文件路径读取PDF内容。
%pip install -qU pypdf langchain_community
from langchain_community.document_loaders import PyPDFLoader
file_path = "../example_data/nke-10k-2023.pdf"
loader = PyPDFLoader(file_path)
docs = loader.load()
print(len(docs))
print(docs[0].page_content[0:100])
print(docs