将PDF转换为适合语言模型处理的格式

引言

PDF文件常常包含重要的非结构化数据,是不可忽视的信息来源。然而,由于其复杂度和长度,直接将它们输入到语言模型中并不现实。在本教程中,我们将构建一个系统,能够从PDF中提取信息并回答问题。我们将使用文档加载器将PDF转换为适合语言模型处理的格式,并构建一个检索增强生成(RAG)管道,能够引用来源材料。

主要内容

文档加载

首先,我们需要选择一个PDF进行加载。以下代码示例将展示如何使用LangChain的内置文档加载器,利用pypdf库从文件路径读取PDF内容。

%pip install -qU pypdf langchain_community

from langchain_community.document_loaders import PyPDFLoader

file_path = "../example_data/nke-10k-2023.pdf"
loader = PyPDFLoader(file_path)

docs = loader.load()

print(len(docs))
print(docs[0].page_content[0:100])
print(docs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值