深入解析 Transformers 框架(四):Qwen2.5/GPT 分词流程与 BPE 分词算法技术细节详解

前面我们已经通过三篇文章,详细介绍了 Qwen2.5 大语言模型在 Transformers 框架中的技术细节,包括包和对象加载、模型初始化和分词器技术细节:

  1. 深入解析 Transformers 框架(一):包和对象加载中的设计巧思与实用技巧
  2. 深入解析 Transformers 框架(二):AutoModel 初始化及 Qwen2.5 模型加载全流程
  3. 深入解析 Transformers 框架(三):Qwen2.5 大模型的 AutoTokenizer 技术细节

在第 3 篇文章中,我们简要介绍了 Qwen2.5 使用的 Byte Pair Encoding (BPE) 分词算法,并用英文序列 “Hello World.” 举例说明了分词过程。然而,这只是 BPE 分词的一部分内容。今天,我们将继续深入探讨 Qwen2.5 的分词流程,重点介绍 Qwen2.5 如何处理中英文混合的文本序列,并解析 BPE 分词算法的具体实现。
分词配置文件

一、中英文分词示例与初步分析

为深入理解 Qwen2.5 的分词过程,我们以一段中英文混合的文本序列“Transformers分词:台风又双叒叕来了!”为例进行剖析。以下是相关的代码示例:

import os

from transformers import AutoTokenizer

# 初始化分词器,从本地文件加载模型
model_dir = os.path.join('D:', os.path.sep, 'ModelSpace', 'Qwen2.5', 'Qwen2.5-1.5B-Instruct')
tokenizer = AutoTokenizer.from_pretrained(
    model_dir,
    local_files_only=True
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值