Meissonic 文生图模型:小参数,超轻量,本地部署推理教程

最近,阿里巴巴集团、Skywork AI 携手香港科技大学及其广州校区、浙江大学、加州大学伯克利分校,联合推出一款超厉害的文生图多模态模型 ——Meissonic!它仅有 1B 参数量,却能在普通电脑上轻松运行推理,生成高质量图像,未来甚至有望在无线端实现文本到图像的生成,简直是文生图领域的 “小钢炮”:

  • 轻量高效:仅 1B 参数量,打破大模型高参数量的常规,在资源有限的普通电脑甚至未来的无线端设备上都能运行,大大降低了对硬件的依赖,为个人创作者和小型企业提供了更经济实惠的文生图解决方案。

  • 技术创新:通过引入改进的 Transformer 架构、高级位置编码策略以及动态采样条件,对非自回归图像生成器(MIM)在文本到图像(T2I)合成任务中的性能和效率进行了大幅提升,能够更精准地理解文本语义并转化为高质量图像。

Meissonic 融合了先进技术与方法,为 MIM 技术带来了重大革新。

Meissonic图片示例

在大模型厂商纷纷追逐高参数量的当下,Meissonic 却独树一帜,将目标定位在小参数、可在无线端和普通电脑运行上。今天,老牛同学就带大家在笔记本电脑上本地部署 Meissonic 模型,并进行推理生成图片(本文的完整源代码地址放在评论区,同时参与本文评论赢新书《计算机视觉之 PyTorch 数字图像处理》)。

下载模型文件

首先,我们要把模型文件下载到本地(目录:MeissonFlow/Meissonic):

cd MeissonFlow
git lfs install
git clone https://www.modelscope.cn/MeissonFlow/Meissonic.git

Python 虚拟环境配置

我们使用 Miniconda 来管理 Python 虚拟环境,关于 Miniconda 的安装和使用,可以参考老牛同学之前的文章:大模型应用研发基础环境配置(Miniconda、Python、Jupyter Lab、Ollama 等)

# Python虚拟环境名:Meissonic,Python版本号:3.10
conda create -n Meissonic python=3.10 -y

# 激活虚拟环境
conda activate Meissonic

安装 Python 依赖包

完整的 Python 依赖包列表如下,为了方便安装,我们可以存储为requirements.txt文件,然后执行命令批量进行安装:pip install -r requirements.txt

--extra-index-url https://download.pytorch.org/whl/cu124
accelerate
pytorch-lightning
torch
torchvision
tqdm
transformers
numpy
gradio
git+https://github.com/huggingface/diffusers.git

Meissonic 模型生成图片

基础环境准备就绪,我们开始准备图片生产代码。首先下载 Meissonic 源代码(目录:Meissonic):

git clone https://github.com/viiika/Meissonic.git

然后,修改源代码目录Meissonic下的app.py文件,以下是老牛同学根据本地部署修改后的代码内容,大家可直接覆盖即可:

# app.py
import os
import sys

sys.path.append("./")

import torch
from src.transformer import Transformer2DModel
from src.pipeline import Pipeline
from src.scheduler import Scheduler
from transformers import (
    CLIPTextModelWithProjection,
    CLIPTokenizer,
)
from diffusers import VQModel
import gradio as gr

# 运行环境
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# 模型文件目录
model_path = os.path.join(os.path.expanduser('~'), 'ModelSpace', 'MeissonFlow', 'Meissonic')

# 模型初始化
model = Transformer2DModel.from_pretrained(model_path, local_files_only=True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值