梯度和反向传播

本文详细探讨了梯度的概念,作为学习参数更新方向的关键。通过计算图的形式展示函数结构,并重点剖析了神经网络中反向传播的原理和计算过程,涉及权重更新和大规模模型优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度是什么?

梯度:是一个向量,指的是学习(参数更新)的方向

计算图和反向传播

计算图:通过图的方式来描述函数的图形
J(a,b,c)=3(a+bc)J(a,b,c)=3(a+bc)J(a,b,c)=3(a+bc),令u=a+v,v=bcu=a+v,v=bcu=a+vv=bc,把它绘制成计算图可以表示为:
在这里插入图片描述
之后对每个节点求偏导有:
在这里插入图片描述

神经网络的反向传播

神经网络的示意图

w1,w2,......wnw1,w2,......wnw1,w2,......wn表示第n层权重
wn[i,j]wn[i,j]wn[i,j]表示第n层第i个神经元,链接到第n+1层第j个神经元的权重。
在这里插入图片描述

神经网络的计算图

在这里插入图片描述
在这里插入图片描述
公式分为两部分:

  1. 括号外:左边红线部分
  2. 括号内:
    1. 加号左边:右边红线部分
    2. 加号右边:蓝线部分
    这样做,当模型很大的时候,计算量非常大
    所以反向传播的思想就是对其中的某一个采纳数单独求梯度,之后更新,如下图所示:
    在这里插入图片描述
    计算过程如下:
    在这里插入图片描述
    更新参数之后,继续进行反向传播
    在这里插入图片描述
    计算过程如下:
    在这里插入图片描述
    继续反向传播
    在这里插入图片描述
    计算过程如下:
    在这里插入图片描述
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值