[工程实践2指导1][论文解读]Complexer-YOLO - Real-time 3D object detection and tracking on semantic point clouds

Simon, M., Amende, K., Kraus, A., Honer, J., Samann, T., Kaulbersch, H., Milz, S., & Gross, H. M. (2019). Complexer-YOLO: Real-time 3D object detection and tracking on semantic point clouds. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 0–0. https://doi.org/10.1109/cvprw.2019.00158

论文中文题目:Complexer-YOLO: 实时三维物体检测与语义点云跟踪

摘要
准确检测三维物体是计算机视觉中的一个基本问题,对自动驾驶、增强/虚拟现实以及许多机器人应用具有巨大影响。在这项工作中,我们提出了一种新颖的神经网络,将最先进的三维检测器与视觉语义分割融合在自动驾驶的背景下。此外,我们引入了尺度-旋转-平移分数(SRTs),这是一种快速且高度可调参数的评估指标,用于比较物体检测结果,从而将推理时间提高了20%并将训练时间减半。此外,我们还应用了最先进的在线多目标特征跟踪技术,对物体测量进行跟踪,以进一步利用时间信息提高准确性和鲁棒性。我们在KITTI上的实验证明,在所有相关类别中,我们取得了与最先进技术相同的结果,同时保持性能和准确性之间的权衡,并仍然能够实时运行。此外,我们的模型是第一个将视觉语义与三维物体检测融合的模型。

创新点:
1、优化ENet模型(暂未研究,原文见:Efficient Semantic Segmentation for Visual Bird’s-eye View Interpretation);
2、体素化输入;
3、SRT;
4、多目标跟踪(暂未研究)。
流程:
1、将点云数据体素化;同时利用ENet对rgb图像进行语义分割;
2、将语义信息的点投影到体素化点云上,从而生成带语义信息的体素化点云;
3、用于3D多类预测的真

Preface page xi Acknowledgments xiii Abbreviations xv Nomenclature xvii 1 Introduction 1 1.1 Introduction to the Book 1 1.2 Motivation for the Book 2 1.3 Brief Literature Summary 3 1.4 Brief Outline 5 2 Background Material 6 2.1 Introduction 6 2.2 Notation and Classification of Complex Variables and Functions 6 2.2.1 Complex-Valued Variables 7 2.2.2 Complex-Valued Functions 7 2.3 Analytic versus Non-Analytic Functions 8 2.4 Matrix-Related Definitions 12 2.5 Useful Manipulation Formulas 20 2.5.1 Moore-Penrose Inverse 23 2.5.2 Trace Operator 24 2.5.3 Kronecker and Hadamard Products 25 2.5.4 Complex Quadratic Forms 29 2.5.5 Results for Finding Generalized Matrix Derivatives 31 2.6 Exercises 38 3 Theory of Complex-Valued Matrix Derivatives 43 3.1 Introduction 43 3.2 Complex Differentials 44 3.2.1 Procedure for Finding Complex Differentials 46 3.2.2 Basic Complex Differential Properties 46 3.2.3 Results Used to Identify First- and Second-Order Derivatives 53 viii Contents 3.3 Derivative with Respect to Complex Matrices 55 3.3.1 Procedure for Finding Complex-Valued Matrix Derivatives 59 3.4 Fundamental Results on Complex-Valued Matrix Derivatives 60 3.4.1 Chain Rule 60 3.4.2 Scalar Real-Valued Functions 61 3.4.3 One Independent Input Matrix Variable 64 3.5 Exercises 65 4 Development of Complex-Valued Derivative Formulas 70 4.1 Introduction 70 4.2 Complex-Valued Derivatives of Scalar Functions 70 4.2.1 Complex-Valued Derivatives of f (z, z∗) 70 4.2.2 Complex-Valued Derivatives of f (z, z∗) 74 4.2.3 Complex-Valued Derivatives of f (Z, Z∗) 76 4.3 Complex-Valued Derivatives of Vector Functions 82 4.3.1 Complex-Valued Derivatives of f (z, z∗) 82 4.3.2 Complex-Valued Derivatives of f (z, z∗) 82 4.3.3 Complex-Valued Derivatives of f (Z, Z∗) 82 4.4 Complex-Valued Derivatives of Matrix Functions 84 4.4.1 Complex-Valued Derivatives of F(z, z∗) 84 4.4.2 Complex-Valued Derivatives of F(z, z∗) 85 4.4.3 Complex-Valued Derivatives of F(Z, Z∗) 86 4.5 Exercises 91 5 Complex Hessian Matrices for Scalar, Vector, and Matrix Functions 95 5.1 Introduction 95 5.2 Alternative Representations of Complex-Valued Matrix Variables 96 5.2.1 Complex-Valued Matrix Variables Z and Z∗ 96 5.2.2 Augmented Complex-Valued Matrix Variables Z 97 5.3 Complex Hessian Matrices of Scalar Functions 99 5.3.1 Complex Hessian Matrices of Scalar Functions Using Z and Z∗ 99 5.3.2 Complex Hessian Matrices of Scalar Functions Using Z 105 5.3.3 Connections between Hessians When Using Two-Matrix Variable Representations 107 5.4 Complex Hessian Matrices of Vector Functions 109 5.5 Complex Hessian Matrices of Matrix Functions 112 5.5.1 Alternative Expression of Hessian Matrix of Matrix Function 117 5.5.2 Chain Rule for Complex Hessian Matrices 117 5.6 Examples of Finding Complex Hessian Matrices 118 5.6.1 Examples of Finding Complex Hessian Matrices of Scalar Functions 118 5.6.2 Examples of Finding Complex Hessian Matrices of Vector Functions 123 Contents ix 5.6.3 Examples of Finding Complex Hessian Matrices of Matrix Functions 126 5.7 Exercises 129 6 Generalized Complex-Valued Matrix Derivatives 133 6.1 Introduction 133 6.2 Derivatives of Mixture of Real- and Complex-Valued Matrix Variables 137 6.2.1 Chain Rule for Mixture of Real- and Complex-Valued Matrix Variables 139 6.2.2 Steepest Ascent and Descent Methods for Mixture of Real- and Complex-Valued Matrix Variables 142 6.3 Definitions from the Theory of Manifolds 144 6.4 Finding Generalized Complex-Valued Matrix Derivatives 147 6.4.1 Manifolds and Parameterization Function 147 6.4.2 Finding the Derivative of H(X, Z, Z∗) 152 6.4.3 Finding the Derivative of G(W,W∗) 153 6.4.4 Specialization to Unpatterned Derivatives 153 6.4.5 Specialization to Real-Valued Derivatives 154 6.4.6 Specialization to Scalar Function of Square Complex-Valued Matrices 154 6.5 Examples of Generalized Complex Matrix Derivatives 157 6.5.1 Generalized Derivative with Respect to Scalar Variables 157 6.5.2 Generalized Derivative with Respect to Vector Variables 160 6.5.3 Generalized Matrix Derivatives with Respect to Diagonal Matrices 163 6.5.4 Generalized Matrix Derivative with Respect to Symmetric Matrices 166 6.5.5 Generalized Matrix Derivative with Respect to Hermitian Matrices 171 6.5.6 Generalized Matrix Derivative with Respect to Skew-Symmetric Matrices 179 6.5.7 Generalized Matrix Derivative with Respect to Skew-Hermitian Matrices 180 6.5.8 Orthogonal Matrices 184 6.5.9 Unitary Matrices 185 6.5.10 Positive Semidefinite Matrices 187 6.6 Exercises 188 7 Applications in Signal Processing and Communications 201 7.1 Introduction 201 7.2 Absolute Value of Fourier Transform Example 201 7.2.1 Special Function and Matrix Definitions 202 7.2.2 Objective Function Formulation 204 x Contents 7.2.3 First-Order Derivatives of the Objective Function 204 7.2.4 Hessians of the Objective Function 206 7.3 Minimization of Off-Diagonal Covariance Matrix Elements 209 7.4 MIMO Precoder Design for Coherent Detection 211 7.4.1 Precoded OSTBC System Model 212 7.4.2 Correlated Ricean MIMO Channel Model 213 7.4.3 Equivalent Single-Input Single-Output Model 213 7.4.4 Exact SER Expressions for Precoded OSTBC 214 7.4.5 Precoder Optimization Problem Statement and Optimization Algorithm 216 7.4.5.1 Optimal Precoder Problem Formulation 216 7.4.5.2 Precoder Optimization Algorithm 217 7.5 Minimum MSE FIR MIMO Transmit and Receive Filters 219 7.5.1 FIR MIMO System Model 220 7.5.2 FIR MIMO Filter Expansions 220 7.5.3 FIR MIMO Transmit and Receive Filter Problems 223 7.5.4 FIR MIMO Receive Filter Optimization 225 7.5.5 FIR MIMO Transmit Filter Optimization 226 7.6 Exercises 228 References 231 Index 237
damo-yolo是一个关于实时物体检测设计的报告。物体检测是计算机视觉中的重要任务之一,它可以识别图像或视频中的各种物体,并对其进行分类和定位。damo-yolo是基于YOLO(You Only Look Once)算法的改进版本,旨在提高实时性能和准确性。 YOLO算法是一种基于深度学习的物体检测算法,其核心思想是将物体检测任务转化为一个回归问题,同时使用卷积神经网络进行端到端的训练。YOLO的优点是具有较高的处理速度,可以在实时场景中进行物体检测。 damo-yoloYOLO算法的基础上进行了优化和改进。首先,对YOLO的网络结构进行了调整,引入了新的特征提取模块和上采样模块,以提高特征表示的能力。其次,优化了损失函数的计算方法,使其更加准确地度量物体检测结果与真实标注的差距。此外,damo-yolo还引入了多尺度处理和先验框的改进方法,以提高检测结果的准确性和鲁棒性。 在实验结果部分,报告给出了在常见的物体检测数据集上的性能评估。实验结果显示,damo-yolo相比于传统的YOLO算法,在保持实时性能的情况下,能够取得更好的检测精度。具体而言,报告给出了不同物体类别的AP(Average Precision)值和mAP(mean Average Precision)值进行对比分析,证明了damo-yolo在物体检测任务中的优越性。 最后,在总结部分,报告指出了damo-yolo设计的优点和存在的不足之处。同时,报告还提出了未来进一步改进的方向,如进一步优化网络结构、改进损失函数和增强数据扩充等。通过这些工作,可以进一步提升damo-yolo的性能和应用场景的拓展。 综上所述,damo-yolo是一个关于实时物体检测设计的报告,通过对YOLO算法的改进,提高了实时性能和准确性,并且具有一定的应用前景和改进空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值