
YOLO
文章平均质量分 91
00000cj
计算机视觉,论文阅读记录
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO-MS 论文解读
本文没有引入新的训练或优化技术,而是通过学习更丰富的多尺度特征表示来改进实时目标检测模型。这使得我们的方法与之前的工作有很大的不同。具体来说,我们从两个新的角度来思考编码多尺度特征的实时目标检测从局部的角度来看,我们设计了一个具有简单而有效的层次特征融合策略的MS-Block。受Res2Net的启发,我们在MS-Block中引入了多个分支来进行特征提取,但不同的是,我们使用了一个带有深度卷积的inverted bottleneck block,从而可以有效地使用大卷积核。从全局的角度来看,我们提出随着原创 2024-03-21 11:44:35 · 1573 阅读 · 0 评论 -
YOLOX论文解读
本文在YOLOv3的基础上进行了一些改进:包括将检测头进行解耦的decoupled head、从anchor-based转为anchor-free、标签分配使用OTA的简化版本SimOTA,提出了YOLOX,在large-scale和light-weight模型方面都取得了SOTA的结果原创 2024-03-08 18:34:08 · 1144 阅读 · 0 评论 -
Gold-YOLO(NeurIPS 2023)论文与代码解析
针对FPN式结构存在的问题,本文在TopFormer理论的基础上,提出了一种新的聚合-分发(GD)机制,它通过融合多层特征并将全局信息注入到更高层,在YOLO中实现高效的信息交换。这显著增加了neck的信息融合能力,同时没有显著增加延迟。基于此提出了一个新的模型Gold-YOLO,它提高了多尺度特征融合的能力,并在所有尺度上实现了延迟和精度之间的理想平衡。此外,本文首次在YOLO系列中实现了MAE-style的预训练,使得YOLO系列可以从无监督预训练中受益。原创 2024-01-23 21:25:26 · 6589 阅读 · 0 评论 -
PP-YOLOE论文解读
本文在PP-YOLOv2的基础上进行改进,采用anchor-free范式,用CSPRepResStage构建了更强大的backbone和neck,采用了ET-head和动态标签分配算法TAL,根据不同的场景提供了s/m/l/x模型。在Tesla V100上,PP-YOLOE-l在COCO测试集上获得了51.4mAP的精度和78.1FPS的速度,相比于上一版本的PP-YOLOv2和YOLOX分别提升了(+1.9AP,+13.35% speed up)和(+1.3AP,+24.96% speed up)。原创 2023-12-29 15:58:35 · 1273 阅读 · 0 评论 -
YOLO v3原理与代码解析
https://github.com/qqwweee/keras-yolo3网络通过多尺度预测输出三个大小不同的预测,分别为13*13*255,26*26*255,52*52*255,这里255=3*(80+5),y_true的shape为[(m, 13, 13, 3, 25), (m, 26, 26, 3, 25), (m, 52, 52, 3, 25)],其中m是batch size,25是voc数据集的class_num + 5, 5是4个坐标和1个置信度。9个anchor的大小为(10,原创 2021-06-21 15:57:48 · 255 阅读 · 0 评论 -
YOLO v2原理与代码解析
YOLO v1的缺点定位错误多 召回率低相比于v1做的改进:Batch Normalization. 作者为所有的卷积层都加上了BN层,得到了2%的mAP提升。 High Resolution Classifer. YOLO v1是先用224*224的输入大小在ImageNet数据集上进行预训练,然后将输入改成448*448再在检测任务上微调。这样在检测任务上微调时网络既要转而学习物体位置信息同时还要适应新的输入大小。YOLO v2改成先用224*224的输入在ImageNet上训练160个e原创 2020-11-16 21:28:31 · 2011 阅读 · 0 评论 -
YOLO v1原理与代码解读
将输入图片分成个网格,如果物体的中心位于某个网格中,这个网格就负责检测该物体。每个网格预测B个bounding boxes和confidence,,即confidence描述的是该box含有object的置信度以及该box预测的有多准确。每个bounding box包含5个预测值,,表示box的中心相对于网格的的距离,是相对于整张图的宽高。每个网格还预测C个类别条件概率,即该网格有物体的情况下属于类别的概率。不管一个网格预测几个boxes,都只预测一组类别概率。...原创 2020-11-09 20:13:48 · 363 阅读 · 1 评论