Query on A Tree
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total Submission(s): 0 Accepted Submission(s): 0
Problem Description
Monkey A lives on a tree, he always plays on this tree.
One day, monkey A learned about one of the bit-operations, xor. He was keen of this interesting operation and wanted to practise it at once.
Monkey A gave a value to each node on the tree. And he was curious about a problem.
The problem is how large the xor result of number x and one node value of label y can be, when giving you a non-negative integer x and a node label u indicates that node y is in the subtree whose root is u(y can be equal to u).
Can you help him?
One day, monkey A learned about one of the bit-operations, xor. He was keen of this interesting operation and wanted to practise it at once.
Monkey A gave a value to each node on the tree. And he was curious about a problem.
The problem is how large the xor result of number x and one node value of label y can be, when giving you a non-negative integer x and a node label u indicates that node y is in the subtree whose root is u(y can be equal to u).
Can you help him?
Input
There are no more than 6 test cases.
For each test case there are two positive integers n and q, indicate that the tree has n nodes and you need to answer q queries.
Then two lines follow.
The first line contains n non-negative integers V1,V2,⋯,Vn , indicating the value of node i.
The second line contains n-1 non-negative integers F1,F2,⋯Fn−1 , Fi means the father of node i+1 .
And then q lines follow.
In the i-th line, there are two integers u and x, indicating that the node you pick should be in the subtree of u, and x has been described in the problem.
2≤n,q≤105
0≤Vi≤109
1≤Fi≤n , the root of the tree is node 1.
1≤u≤n,0≤x≤109
For each test case there are two positive integers n and q, indicate that the tree has n nodes and you need to answer q queries.
Then two lines follow.
The first line contains n non-negative integers V1,V2,⋯,Vn , indicating the value of node i.
The second line contains n-1 non-negative integers F1,F2,⋯Fn−1 , Fi means the father of node i+1 .
And then q lines follow.
In the i-th line, there are two integers u and x, indicating that the node you pick should be in the subtree of u, and x has been described in the problem.
2≤n,q≤105
0≤Vi≤109
1≤Fi≤n , the root of the tree is node 1.
1≤u≤n,0≤x≤109
Output
For each query, just print an integer in a line indicating the largest result.
Sample Input
2 2 1 2 1 1 3 2 1
Sample Output
2 3
思路:现场思路已经想通了,但是码了两个小时没码出来。。。好尴尬。官方题解思路好像是从底层出发启发式合并,我这里给个不一样的思路,按照dfs序建可持久化字典树,以u为根的子树的字典树=以u为根的子树的最后一个节点的字典树-u按照dfs的前一个节点的字典树。然后就可以在线查询了。下面给代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cmath>
#include<queue>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
#include<string>
#include<utility>
#include<set>
#include<map>
#include<stack>
#include<vector>
#define maxn 100005
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long LL;
const double eps = 1e-5;
const int mod = 1e9+7;
int root[maxn], ls[maxn * 33], rs[maxn * 33], val[maxn * 33], index, ans, len, head[maxn], pre[maxn], last[maxn], temp, a[maxn];
struct node{
int v, next;
}p[maxn];
int newnode(int key){
val[index] = key;
return index++;
}
int insert(int step, int now1,int key){
bool jud = (now1 == -1);
int now2 = newnode(jud ? 1 : val[now1] + 1);
if (!step)
return now2;
if ((1 << (step - 1))&key){
ls[now2] = jud ? -1 : ls[now1];
rs[now2] = insert(step - 1, jud ? -1 : rs[now1], key);
}
else{
rs[now2] = jud ? -1 : rs[now1];
ls[now2] = insert(step - 1, jud ? -1 : ls[now1], key);
}
return now2;
}
bool query(int step, int now1, int now2, int x,bool flag){
if (step == -1)
return true;
if (now2 == -1 || (now1 >= 0 && !(val[now2] - val[now1])))
return false;
if (flag)
ans ^= 1 << step;
bool jud = (now1 == -1);
if ((1 << (step - 1))&x){
if (query(step - 1, jud ? -1 : ls[now1], ls[now2], x, 0))
return true;
query(step - 1, jud ? -1 : rs[now1], rs[now2], x, 1);
}
else{
if (query(step - 1, jud ? -1 : rs[now1], rs[now2], x, 1))
return true;
query(step - 1, jud ? -1 : ls[now1], ls[now2], x, 0);
}
return true;
}
void addedge(int u, int v){
p[len].v = v;
p[len].next = head[u];
head[u] = len++;
}
void dfs(int x, int fa){
last[x] = x;
pre[x] = temp;
root[x] = insert(31, root[temp], a[x]);
temp = x;
for (int i = head[x]; ~i; i = p[i].next){
if (p[i].v == fa)
continue;
dfs(p[i].v, x);
last[x] = last[p[i].v];
}
}
int main(){
root[0] = -1;
int n, q;
while (~scanf("%d%d", &n, &q)){
memset(head, -1, sizeof(head));
len = index = temp = 0;
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for (int i = 2; i <= n; i++){
int x;
scanf("%d", &x);
addedge(x, i);
}
dfs(1, 0);
while (q--){
int u, x;
scanf("%d%d", &u, &x);
ans = x;
query(31, root[pre[u]], root[last[u]], x, 0);
printf("%d\n", ans);
}
}
}