51nod1228 序列求和 (伯努利数)

本文介绍了一种高效的序列求和算法实现方法,针对形如 T(n)=n^k 的序列,快速计算 S(n)=T(1)+T(2)+...+T(n) 的和,并通过取模操作解决大数问题,适用于编程竞赛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目来源:  HackerRank
基准时间限制:3 秒 空间限制:131072 KB 分值: 160  难度:6级算法题
 收藏
 关注
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n)。给出n和k,求S(n)。
例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55。
由于结果很大,输出S(n) Mod 1000000007的结果即可。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 5000)
第2 - T + 1行:每行2个数,N, K中间用空格分割。(1 <= N <= 10^18, 1 <= K <= 2000)
Output
共T行,对应S(n) Mod 1000000007的结果。
Input示例
3
5 3
4 2
4 1
Output示例
225
30
10
相关问题
序列求和 V2 
320
 
序列求和 V5 
1280
 
序列求和 V4 
1280
 
序列求和 V3 
320
李陶冶  (题目提供者)


#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD=1e9+7;
const int maxn=4e3+10;
#define CLR(a) memset(a,0,sizeof(a))
//使得一个数标准化,最稳的方法就是(取模+模后)再 取模 
#define DEAL(a) ((a%MOD+MOD)%MOD)  
LL B[maxn],Pow[maxn],n,k,C[maxn][maxn];
LL quickpow(LL a,LL b)
{
	a%=MOD;
	LL ans=1;
	while(b)
	{
		if(b&1) ans=ans*a%MOD;
		a=a*a%MOD;
		b>>=1;
	}
	return DEAL(ans);
}
void GetC()
{
	CLR(C);
	for(int i=0;i<maxn;i++)
	{
		C[i][0]=1;
		for(int j=1;j<=i;j++)
		{
			C[i][j]=C[i-1][j]+C[i-1][j-1];
			C[i][j]%=MOD;
		}
	}
}
LL GetInv(LL x)
{
	return quickpow(x,MOD-2);//费马小定理 
}
void GetB()
{
	B[0]=1;
	for(int i=1;i<maxn-1;i++) 
	{
		LL temp=0;
		for(int j=0;j<i;j++)
		{
			temp+=C[i+1][j]*B[j];
			temp%=MOD;
		}
		temp=temp*-GetInv(i+1)%MOD;
		B[i]=DEAL(temp);
	}
}
int main()
{
	GetC();//预处理组合数 
	GetB();//预处理伯努利数 
	int T;
	scanf("%d",&T);
	while(T--)
	{
		Pow[0]=1;
		scanf("%lld%lld",&n,&k);
		for(int i=1;i<=k+1;i++) Pow[i]=(n+1)%MOD*Pow[i-1]%MOD;
		LL ans=0;
		for(int i=1;i<=k+1;i++) ans+=C[k+1][i]*B[k+1-i]%MOD*Pow[i]%MOD;
		ans=DEAL(ans);
		ans=ans*GetInv(k+1)%MOD;
		printf("%lld\n",DEAL(ans));
	}

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值