对一个多维随机变量作为线性变换以后的协方差矩阵

假设X=(x_{1},x_{2},...,x_{n})^{T}是一个n维的随机变量,它的协方差矩阵\Sigma_{X} =E\left [ (X-E(X))(X-E(X))^{T} \right ]

X做线性变换Y=AX,其中A是一个矩阵(当然也可以是一个标量),Y的协方差矩阵\Sigma _{Y}=A\Sigma _{X}A^{T}

证明如下:

\Sigma_{Y} =E\left [ (Y-E(Y)(Y-E(Y))^{T} \right ]

Y=AX代入\Sigma _{Y},得

\Sigma_{Y} =E\left [ (AX-E(AX))(AX-E(AX))^{T} \right ]

=E\left [ (AX-AE(X))(AX-AE(X))^{T} \right ]

=E\left [ A(X-E(X))(A(X-E(X)))^{T} \right ]

=E\left [ A(X-E(X))(X-E(X))^{T}A^{T} \right ]

=AE\left [ (X-E(X))(X-E(X))^{T} \right ]A^{T}

=A\Sigma _{X}A^{T}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值