Attention Is All You Need: Transformer的提出(二)

接上一篇。

Model Architecture

Applications of Attention in our Model,注意力机制在模型中的应用

上一篇讲了文章提出的注意里机制:提出新的一种注意力计算方法Scaled dot-product attention,以及其扩展的multi-head attention。

论文接下来的内容就是说的那张结构图中的三处attention的不同,把那张图再贴过来,便于对比。
在这里插入图片描述

  • 首先是encoder这边的Multi-Head Attention。论文的原文为:The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder can attend to all positions in the previous layer of the encoder.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新兴AI民工

码字不易,各位看客随意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值