博主一直一来做的都是基于Transformer
的目标检测领域,相较于基于卷积的目标检测方法,如YOLO
等,其检测速度一直为人诟病。
终于,RT-DETR
横空出世,在取得高精度的同时,检测速度也大幅提升。
那么RT-DETR
是如何做到的呢?
在研究RT-DETR
的改进前,我们先来了解下DETR
类目标检测方法的发展历程吧
- 首先是
DETR
,该方法作为Transformer
在目标检测领域的开山之作,一经推出,便引发了极大的轰动,该方法巧妙的利用Transformer
进行特征提取与解码,同时通过匈牙利匹配方法完成预测框与真实框的匹配,避免了NMS
等后处理过程。 - 随后
DAB-DETR
引入了动态锚框作为查询向量,从而对DETR
中的100
个查询向量进行了解释。 Deformable-DETR
针对Transformer
中自注意力计算复杂度高的问题,提出可变形注意力计算,即通过可学习的选取少量向量进行注意力计算,大幅的降低了计算量。- DN-DETR认为匈牙利匹配的二义性是导致
DETR
训练收敛慢的原因,因此提出查询降噪机制,即利用先前DAB-DETR
中将查询向量解释为锚框的原理,给查询向量添加一些噪声来辅助模型收敛,最终大幅提升了模型的训练速度。 - DINO则是在DAB-DETR与DN-DETR的基础上进行进一步的融合与改进。
H-DETR
为使模型获取更多的正样本特征,从而提升检测精度,因此提出混合匹配方法,在训练阶段,包含原始的匈牙利匹配分支与一个一对多的辅助匹配分支,而在推理阶段,则只有一个匈牙利匹配分支。
然而,上述方法尽管已经大幅提升了检测精度,降低了计算复杂度,但其受Transformer
本身高计算复杂度的制约,DETR
类目标检测方法的实时性始终令人难以满意,尤其是相较于YOLO
等单阶段目标检测方法,其检测速度的确差别巨大。
为了解决这个问题,百度提出了RT-DETR
,该方法依旧是在DETR
的基础上改进生成的,从论文中给出的实验结果来看,该方法无论在检测速度还是检测精度方法都已经超过了YOLOv8
,实现了真正的实时性。
- 创新点1:高效混合编码器:RT-DETR使用了一种高效的混合编码器,通过解耦尺度内交互和跨尺度融合来处理多尺度特征。这种独特的基于视觉Transformer的设计降低了计算成本,并允许实时物体检测。
- 创新点2:IoU感知查询选择:RT-DETR通过利用IoU感知的查询选择改进了目标查询初始化。这使得模型能够聚焦于场景中最相关的目标,从而提高了检测精度。
- 创新点3:自适应推理速度:RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而无需重新训练。这种适应性便于在各种实时目标检测场景中的实际应用。
RT-DETR的代码有两个,一个是官方提供的代码,但该代码功能比较单一,只有训练与验证,另一个则是集成在YOLOv8中,该代码的设计就比较全面了
环境部署
conda create -n rtdetr python=3.8
conda activate rtdetr
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
cd RT-DETR-main/rtdetr_pytorch //这个路径根据你自己的改
pip install -r requirement.txt
该算法的环境为pytorch=2.0.1
,注意,尽量要用pytorch2
以上的版本,否则可能会报错:
AttributeError: module 'torchvision' has no attribute 'disable_beta_transforms_warning'
官方模型训练
参数配置
该算法的配置封装较好,我们只需要修改配置即可:train.py
,指定要使用的骨干网络。
parser.add_argument('--config', '-c', default="/rtdetr_pytorch\configs/rtdetr/rtdetr_r18vd_6x_coco.yml",type=str, )
修改数据集配置文件:RT-DETR-main\rtdetr_pytorch\configs\dataset\coco_detection.yml
修改训练集与测试集路径,同时修改类别数。
随后便可以开启训练:该文件中指定 epochs
RT-DETR-main\rtdetr_pytorch\configs\rtdetr\include\optimizer.yml
首次训练,需要下载骨干网络的预训练模型
在这里,博主使用ResNet18
作为骨干特征提取网络
训练结果
开始运行,查看GPU
使用情况,此时的batch-size=8
,可以看到显存占用4.5G
左右,相较于博主先前提出的方法或者DINO
,其显存占用少了许多,DINO
的batch-size=2
时的显存占用将近16G
.
训练了24轮的结果。
训练的结果会保存在output
文件夹内:
官方模型推理
在进行模型推理前,需要先导出模型,在官方代码的tools
文件夹下有个export_onnx.py
文件,只需要指定配置文件与训练好的模型文件:
parser.add_argument('--config', '-c', default="/rtdetr_pytorch\configs/rtdetr/rtdetr_r18vd_6x_coco.yml",type=str, )
parser.add_argument('