本科生学深度学习-GRU最简单的讲解,伪代码阐述逻辑,实例展示效果

本文介绍了GRU的概念,作为LSTM的简化版,其结构更简洁,效率更高。通过对比LSTM的门控单元,解析了GRU的重置门和更新门。并提供了一个实例,展示从LSTM代码改写为GRU的过程,以及在实现中遇到的问题和解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.gru 是什么

2.和LSTM的网络结构差别

3.门控单元解释

4.实例

​下面的代码是在LSTM的基础上改动来的,数据也是和LSTM一样的,所以整体的结构是一样的,但是在修改代码的过程中还是遇到了一些问题,先看下完整的代码。

5、遇到的问题:

6、总结


RNN写了几期了,今天写下最后一个RNN的神经网络GRU,废话不多说,直接走起。

1.gru 是什么

GRU是LSTM的一种简单的变体,比LSTM网络的结构更加简单,而且效果也不差,运行效率更高,因此也是当前流行的一种网络结构。

使用GRU能够达到相当的效果,并且相比之下更容易进行训练,能够很大程度上提高训练效率,因此很多时候会更倾向于使用GRU。

2.和LSTM的网络结构差别

上一节的时候我写了LSTM的网络结构,LSTM最终的三个门控神经单元是输入门,遗忘门,以及输出门,简单的概括下三个门控单元所做的事

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香菜+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值