Policy Gradient-优化动作选择函数

本文介绍了强化学习中的Policy Gradient方法,详细阐述了策略梯度的基本原理,包括策略、损失函数、衰减的累加期望以及动作选择策略。通过具体的例子解释了如何根据奖励调整动作概率,并提到了在连续动作空间中的优势以及收敛问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天收到一个新的订阅通知,很是欣喜,感谢订阅同学的支持。

还以为这个专栏没有人关注了呐,一直也没什么兴趣更新。

为了回馈大家的支持,继续更新一篇。

今天写一下强化学习力的 Policy Gradient,这个之前的时候一直不太懂了,回头看确实蛮简单的。

1、Policy Gradient 到底咋回事

强化学习四要素:状态(state)、动作(action)、策略(policy)、奖励(reward)。

名词 解释
智能体 学习器与决策者的角色。
环境 智能体之外一切组成的、与之交互的事物。
动作 智能体的行为表征。
状态 智能体从环境获取的信息。
奖励 环境对于动作的反馈。
策略 智能体根据状态进行下一步动作的函数。
状态转移概率 智能体做出动作后进入下一状态的概率。

Policy Gradient 翻译过来就是策略梯度,就是训练策略这个神经网络。

2、损失函数是什么?

Policy Gradien

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香菜+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值