数字图像处理 || CImg实现平滑空间滤波

本文介绍了一种自定义实现的空间平滑滤波器和中值滤波器,详细展示了如何通过CImg库在图像处理中应用这两种滤波器。平滑滤波器用于减少图像噪声,中值滤波器则有效去除椒盐噪声,保持图像细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.平滑线性滤波器:

自己实现了用于空间平滑滤波的函数:

CImg<int> Smooth_filter(CImg<int> img, int num) {
	CImg<int> m(num, num);
	cimg_forXY(m, x, y) {
		m(x, y) = 1;
	}
	int w = img.width(), h = img.height();
	int k = (num - 1) / 2;
	CImg<int> pic(w, h, 1, 1);
	pic = img;
	pic.resize(w + 2 * k, h + 2 * k, 1, 1);
	CImg<int> pic1 = pic;
	if (num % 2 == 0) {
		cout << "不合法" << endl;
	}
	else {
		CImg<int> temp(w,h,1,1);
		cimg_forXY(pic, x, y) {
			if (x >= k && y >= k && x <= w + k - 1 && y <= h + k - 1) {
				CImg<int> t(num, num);
				for (int i = 0; i < num; i++) {
					for (int j = 0; j < num; j++) {
						t(i, j) = pic1(x-k+i, y-k+j);
					}
				}
				double sum = 0.0;
				cimg_forXY(t, i1, j1) {
					cimg_forXY(m, i2, j2) {
						if (i1 + i2 - k == 1 && j1 + j2 - k == 1) {
							sum += (double)t(i1, j1)*m(i2, j2);
						}
					}
				}
				pic(x, y) = sum / num / num;
			}
		}
		
	}
	return pic;
}

使用3*3的矩阵进行平滑滤波后的效果:

在这里插入图片描述
在这里插入图片描述

2.中值滤波器:

CImg<int> median_filter(CImg<int> img, int num) {
	int w = img.width(), h = img.height();
	int k = (num - 1) / 2;
	CImg<int> pic(w, h, 1, 1);
	pic = img;
	pic.resize(w + 2 * k, h + 2 * k, 1, 1);
	CImg<int> pic1 = pic;
	if (num % 2 == 0) {
		cout << "不合法" << endl;
	}
	else {
		CImg<int> temp(w, h, 1, 1);
		cimg_forXY(pic, x, y) {
			if (x >= k && y >= k && x <= w + k - 1 && y <= h + k - 1) {
				CImg<int> t(num, num);
				int a = num * num;
				int *filter;
				filter = new int[a];
				for (int i = 0; i < num; i++) {
					for (int j = 0; j < num; j++) {
						t(i, j) = pic1(x - k + i, y - k + j);
						filter[i*num + j] = t(i, j);
					}
				}
				sort(filter,filter+a);
				pic(x, y) = filter[(a + 1) / 2 - 1];
			}
		}

	}
	return pic;
}

使用3*3中值滤波器的滤波效果:
在这里插入图片描述

使用CImg封装的中值滤波器检验一下效果—blur_median
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值