G2 动态更新某个文本的方法

蚂蚁金服的 G2 这个库有提供写入文本的功能. 可惜没提供比较好的 示例.想动态更新文本还是要研究一番的. 我就研究了一上午. 终于研究通了, 把重点说一下.
如果要想在界面上做到下面的这种效果.
在这里插入图片描述

需要在代码中新建一个View专门渲染文本 , 到时候更新的时候专门更新某个View. 这样可以保证其他的数据不会被更新掉. 并且content 要写成函数的形式. 代码如下.

<script lang="ts">
import Vue from 'vue';
import { Chart } from '@antv/g2';

export default Vue.extend({
  data() {
    return {
      current_epoch: 100,
      epochsbili: 0.5, // 进度比例 50%
      visiblCreatNewTrainTaskModal: false,
      DataSets: [], // 数据集
      LossArray: [], // 损失函数指标数据.
      ImageFileCount: 0, //  需要训练的样本图片个数
      TaskState: '已停止',
      currentEpochLossData: {}, // 当前的损失函数指标数据
      epoch: 0,
      epochs: 0,
      // 训练参数
      trainParam: {
        weights: './yolov5/weights/yolov5s.pt', // default='./runs/exp11/weights/best.pt', help='initial weights path')
        cfg: './yolov5/models/yolov5m.yaml', // help='model.yaml path')
        data: './yolov5/data/mydataset.yaml', // help='data.yaml path')#
        hyp: './yolov5/data/hyp.scratch.yaml', // help='hyperparameters path')
        epochs: 300,
        AutoSaveEpochs: 1, // 模型保存间隔 自动保存轮数
        batch_size: 10, // help='total batch size for all GPUs')#
        img_size: [640, 640], // help='[train, test] image sizes')
        rect: '', // help='rectangular training')
        resume: false, // help='resume most recent training') resume 应该是恢复训练,加上的话是用最近一次的权重开始训练
        nosave: true, // help='only save final checkpoint')
        notest: true, // help='only test final epoch')
        noautoanchor: true, // help='disable autoanchor check')
        evolve: true, // help='evolve hyperparameters') 进化超参数(hyp),可以试试
        bucket: '', // help='gsutil bucket')
        cache_images: true, // help='cache images for faster training')
        image_weights: true, // help='use weighted image selection for training')
        name: '', // help='renames results.txt to results_name.txt if supplied')
        device: 'cpu', // help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        multi_scale: true, // help='vary img_size +/- 50%%')
        single_cls: true, // help='train as single_class dataset')
        adam: true, // help='use torch.optim.Adam() optimizer')
        sync_bn: true, // help='use SyncBatchNorm, only available in DDP mode')
        local_rank: -1, // help='DDP parameter, do not modify')
        logdir: 'runs/', // help='logging directory')
        workers: 8 // help='maximum number of dataloader workers')
      },
      hyp: {
        lr0: 0.01, // initial learning rate (SGD=1E-2, Adam=1E-3)    ######lr0:0.01#初始学习率(SGD=1E-2,Adam=1E-3)
        lrf: 0.2, // final OneCycleLR learning rate (lr0 * lrf)      ######lrf:0.2#最终一个周期ELR学习率(lr0*lrf)
        momentum: 0.937, // SGD momentum/Adam beta1                  ######动量:0.937新加坡元/亚当贝塔1
        weight_decay: 0.0005, // optimizer weight decay 5e-4         ######重量衰减:0.0005优化器重量衰减5e-4
        warmup_epochs: 3.0, // warmup epochs (fractions ok)
        warmup_momentum: 0.8, // warmup initial momentum
        warmup_bias_lr: 0.1, // warmup initial bias lr
        giou: 0.05, // box loss gain                                 ######giou:0.05#盒损增益
        cls: 0.5, // cls loss gain                                   ######cls:0.5#cls损益
        cls_pw: 1.0, // cls BCELoss positive_weight                  ######cls_pw:1.0#cls B无正重量
        obj: 1.0, // obj loss gain (scale with pixels)               ######obj:1.0#obj损失增益(按像素缩放)
        obj_pw: 1.0, // obj BCELoss positive_weight                  ######目标重量:1.0
        iou_t: 0.20, // IoU training threshold                       ######iou t:0.20#iou培训阈值
        anchor_t: 4.0, // anchor-multiple threshold                  ######锚定值:4.0#锚定多重阈值
        anchors: 0, // anchors per output grid (0 to ignore)         #######定位点:每个输出网格0个定位点(0忽略)
        fl_gamma: 0.0, // focal loss gamma (efficientDet default gamma=1.5)    ######flťgamma:0.0#焦点损失gamma(efficientDet default gamma=1.5)
        hsv_h: 0.015, // image HSV-Hue augmentation (fraction)       ######hsv_h:0.015#图像hsv色彩空间 色调H增强(分数)
        hsv_s: 0.7, // image HSV-Saturation augmentation (fraction)  ######hsv s:0.7#图像hsv色彩空间 饱和S增强(分数)
        hsv_v: 0.4, // image HSV-Value augmentation (fraction)       ######hsv#v:0.4#图像hsv色彩空间 亮度V增大(分数)
        degrees: 0.0, // image rotation (+/- deg)                    ######度数:0.0#图像旋转(+/-度)
        translate: 0.1, // image translation (+/- fraction)          ######翻译:0.1#图像翻译(+/-分数)
        scale: 0.5, // image scale (+/- gain)                        ######比例:0.5#图像比例(+/-增益)
        shear: 0.0, // image shear (+/- deg)                         ######剪切:0.0#图像剪切(+/-度)
        perspective: 0.0, // image perspective (+/- fraction), range 0-0.001   ######透视:0.0#图像透视(+/-分数),范围0-0.001
        flipud: 0.0, // image flip up-down (probability)             ######flipud:0.0#图像上下翻转(概率)
        fliplr: 0.5, // image flip left-right (probability)          ######fliplr:0.5#图像左右翻转(概率)
        mosaic: 1.0, // image mosaic (probability)
        mixup: 0.0 // image mixup (probability)			                 ######混音:0.0#图像混音(概率)
      },
      result: {
        GIoU: 0, // GIoU:推测为GIoU损失函数均值,越小方框越准;
        Objectness: 0, // Objectness:推测为目标检测loss均值,越小目标检测越准;
        Classification: 0, // Classification:推测为分类loss均值,越小分类越准;
        Precision: 0, // Precision:准确率(找对的/找到的);
        Recall: 0, // Recall:召回率(找对的/该找对的);
        mAP: 0, // mAP@0.5 & mAP@0.5:0.95:这里说的挺好,总之就是AP是用Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值,@0.5:0.95表示阈值取0.5:0.05:0.95后取均值。

      }
    };
  },
  mounted() {
    // console.log(45252);
    // 数量÷总数×100= 百分比
    this.epochsbili = 0; // Math.round(this.current_epoch / this.trainParam.epochs * 100);
    this.JinDuViewChart = this.JinDuView();
    this.LossViewChart = this.LossView();
    this.LoadDatasets();

    setInterval(this.GetLossArray.bind(this), 5000);
  },
  methods: {
    LoadDatasets() {
      this.$post({
        url: '/DatasetManage/LoadDatasets',
        method: 'post',
        headers: {
          'Content-Type': 'application/json;charset=UTF-8'
        }
      })
        .then((res: any) => {
          if (res.success) {
            this.DataSets = res.data;
          } else {
            this.$message.info(res.message);
          }
        });
    },

    GetLossArray() {
      console.log('正在加载训练指标数据..');
      this.$post({
        url: '/Train/GetLossArray',
        method: 'post',
        headers: {
          'Content-Type': 'application/json;charset=UTF-8'
        }
      })
        .then((res: any) => {
          if (res.success) {
            this.ImageFileCount = res.data.ImageFileCount;
            this.LossArray = res.data.LossLogArray;
            this.TaskState = res.data.TaskState;
            this.RefreshLossView();
          } else {
            this.$message.info(res.message);
          }
        });
    },
    // 刷新界面
    RefreshLossView() {
      console.log('正在刷新训练指标数据..');

      if (this.LossArray.length === 0) {
        return;
      }
      const lastindex = this.LossArray.length - 1;
      const lastloss = this.LossArray[lastindex] as any; 
      
      this.epoch = lastloss.epoch;
      this.epochs = lastloss.epochs;
      this.currentEpochLossData = lastloss;

      this.epochsbili = Math.round(this.epoch / this.epochs * 100);
      const data2 = [];
      for (let i = 0; i < 100; i++) {
        const item: any = {};
        item.type = i + '';
        item.value = 4;
        if (i === this.epochsbili) {
          item.value = 8;
        }
        if (i > this.epochsbili) {
          item.value = 0;
        }
        data2.push(item);
      }  
      // this.JinDuViewChart.views[2] 就是view3 单独更新数据,就可以刷新
      this.JinDuViewChart.views[2].changeData(data2);
      // this.JinDuViewChart.paint(true);
      this.LossViewChart.changeData(this.LossArray);
    },
    CreatNewTrainTask() {

      const par = {
        option: JSON.stringify(this.trainParam),
        hyp: JSON.stringify(this.hyp),
      };

      this.$post.post('/Train/CreatNewTrainTask', this.ToFormData(par))
        .then((res: any) => {
          if (res.success) {
            this.$message.info(res.message);
            // this.GetLabels();
          } else {
            this.$message.info(res.message);
          }
        });
    },
    LossView() {
      const data = [
        { year: '1991', value: 3 },
        { year: '1992', value: 4 },
        { year: '1993', value: 3.5 },
        { year: '1994', value: 5 },
        { year: '1995', value: 4.9 },
        { year: '1996', value: 6 },
        { year: '1997', value: 7 },
        { year: '1998', value: 9 },
        { year: '1999', value: 13 },
      ];
      const chart = new Chart({
        container: 'LossViewEL',
        autoFit: true,
        height: 400,
      });

      chart.data(data);
      chart.scale({
        year: {
          range: [0, 1],
        },
        value: {
          min: 0,
          nice: true,
        },
      });

      chart.tooltip({
        showCrosshairs: true, // 展示 Tooltip 辅助线
        shared: true,
      });

      chart.line().position('year*value').label('value');
      chart.point().position('year*value');


      const titleView3 = chart.createView();
      titleView3.annotation().text({
        position: ['50%', '5%'],
        content: '误差(loss)',
        style: {
          fill: '#CBCBCB',
          fontSize: 25,
          textAlign: 'center',
          textBaseline: 'middle',
        },
      });

      chart.render();
      return chart;
    },
    JinDuView() {
      // 极坐标下的柱状图
      // 构造数据
      // 灰色线, 总进度


      // 蓝色线线, 进度线
      const data2 = [];
      for (let i = 0; i < 100; i++) {
        const item: any = {};
        item.type = i + '';
        item.value = 4;
        if (i === this.epochsbili) {
          item.value = 8;
        }
        if (i > this.epochsbili) {
          item.value = 0;
        }
        data2.push(item);
      }

      const chart = new Chart({
        container: 'jindu',
        autoFit: true,
        height: 400,
        padding: 0,
      });
      chart.scale({
        type: {
          range: [0, 1],
        },
        value: {
          sync: true,
        },
      });
      chart.legend(false);
      chart.tooltip(false);

      const view1 = chart.createView();
      const data1 = [];
      for (let i = 0; i < 100; i++) {
        data1.push({
          type: i + '',
          value: 4, // 线的长短
        });
      }
      view1.data(data1);
      view1.axis(false);
      view1.coordinate('polar', {
        startAngle: (-9 / 8) * Math.PI,
        endAngle: (1 / 8) * Math.PI,
        innerRadius: 0.75,
        radius: 0.8,
      });
      view1
        .interval()
        .position('type*value')
        .color('#CBCBCB')
        .size(6);

      const view2 = chart.createView();
      view2.data(data1);
      view2.axis('value', false);
      view2.axis('type', {
        grid: null,
        line: null,
        tickLine: null,
        label: {
          offset: -25,
          style: {
            textAlign: 'center',
            fill: '#CBCBCB',
            fontSize: 18,
          },
          formatter: (val) => {
            if (+val % 7 !== 0) {
              return '';
            }

            return val;
          },
        },
      });
      // 内圈小虚线
      view2.coordinate('polar', {
        startAngle: (-9 / 8) * Math.PI,
        endAngle: (1 / 8) * Math.PI,
        innerRadius: 0.95,
        radius: 0.55,
      });
      view2
        .interval()
        .position('type*value')
        .color('#A987FB')
        .size(2);

      // chart.point()
      //   .position('x*y')
      //   .label('value', (xValue) => {
      //     return {
      //       content: xValue + '%',
      //     };
      //   });
      const view3 = chart.createView();

      view3.data(data2);
      view3.axis(false);
      view3.coordinate('polar', {
        startAngle: (-9 / 8) * Math.PI,
        endAngle: (1 / 8) * Math.PI,
        innerRadius: 0.75,
        radius: 0.8,
      });
      view3
        .interval()
        .position('type*value')
        .color('value', '#3023AE-#188cfa')
        .size(6);

      view3.annotation().text({
        position: ['50%', '60%'],
        content: '轮次',
        style: {
          fill: '#CBCBCB',
          fontSize: 12,
          textAlign: 'center',
          textBaseline: 'middle',
        },
      });



      view3.annotation().text({
        position: ['50%', '75%'],
        content: '样本数',
        style: {
          fill: '#CBCBCB',
          fontSize: 12,
          textAlign: 'center',
          textBaseline: 'middle',
        },
      });


      view3.annotation().text({
        position: ['50%', '95%'],
        content: () => {
          return this.TaskState;
        },
        style: {
          fill: '#1f65a4',
          fontSize: 20,
          textAlign: 'center',
          textBaseline: 'middle',
        },
      });

      view3.annotation().text({
        position: ['50%', '5%'],
        content: '进度(progress)%',
        style: {
          fill: '#CBCBCB',
          fontSize: 25,
          textAlign: 'center',
          textBaseline: 'middle',
        },
      });

      view3.annotation().text({
        position: ['50%', '55%'],
        content: () => {  // 注意这里是函数的形式
          return this.epoch + '/' + this.epochs;
        },
        top: true,
        style: {
          fill: '#CBCBCB',
          fontSize: 24,
          textAlign: 'center',
          textBaseline: 'middle',
        },
      });

      view3.annotation().text({
        position: ['50%', '70%'],
        content: () => { // 注意这里是函数的形式
          return this.ImageFileCount;
        },
        style: {
          fill: '#CBCBCB',
          fontSize: 24,
          textAlign: 'center',
          textBaseline: 'middle',
        },
      });
      chart.render();
      return chart;
    }
  }
});

</script>

this.JinDuViewChart.views[2].changeData(data2);

<think>好的,用户之前已经得到了生成GPS C/A码的完整MATLAB代码,现在他提出需要将G2和G2i生成的码保存在文件中。我需要先理解他的具体需求。 首先,用户可能是在进行信号仿真或者需要进一步分析G2和G2i序列。保存到文件可能用于后续处理,比如与其他系统集成,或者作为测试用例。考虑到G2和G2i都是1023位的序列,保存时需要考虑数据格式。 接下来,我需要回顾之前的代码。原来的函数生成C/A码是通过G1和G2i的异或操作得到的。但用户现在需要单独保存G2和G2i的码。原代码中的G2生成部分可能存在问题,因为G2i其实是G2延迟后的版本,但代码里是直接通过抽头选择来生成G2i的。需要确认是否正确生成了G2的原始序列和G2i的延迟序列。 然后,思考如何修改代码。原来的循环中,每次生成一个码片时,同时生成G1和G2i。但用户需要保存整个G2寄存器的输出,而不仅仅是抽头后的G2i。可能需要生成完整的G2序列,即每个码片的G2寄存器最高位的输出,而G2i则是通过抽头选择后的结果。或者,是否G2i是G2经过不同延迟后的序列? 根据GPS C/A码的生成规范,G2序列会被不同的延迟(根据PRN的不同)来生成G2i,然后与G1异或得到C/A码。因此,原始的G2序列是未被延迟的,而每个PRN对应不同的延迟,即通过不同的抽头选择来等效延迟。因此,保存G2的原始序列可能需要保存每个时刻G2寄存器的输出,而G2i则是根据抽头选择后的结果。 但原代码中的G2生成部分,每次循环都会移位,因此G2的完整序列应该是每个时刻移位后的最高位?或者需要记录每次G2的输出?可能需要重新检查生成逻辑。 在原来的代码中,G2的生成部分,每个循环中,feedback_g2是计算反馈,然后右移。但G2的输出其实是最高位?或者不是?因为G1的输出是最高位,即g1(end)。而G2的输出在代码中是抽头的位置,不是直接输出最高位。因此,原始的G2序列应该是每个时刻移位前的最高位吗? 例如,G1的输出是g1(end),即移位前的最高位。而G2的输出是抽头位置的模2和。但用户可能想保存原始的G2序列,即每个码片的最高位,或者整个G2寄存器的状态?可能需要明确G2和G2i的定义。 根据GPS的规范,G2是一个移位寄存器,生成多项式是x^10 +x^9 +x^8 +x^6 +x^3 +x^2 +1。而G2i则是将G2的输出延迟i个码片后的版本。因此,原始的G2序列是每个时刻移位后的输出,而G2i是延迟后的版本。在代码中,通过选择不同的抽头来等效延迟i,而不需要实际延迟整个序列。 所以,保存G2的原始序列应该记录每个时刻的G2的输出,即每次循环中移位后的最高位?或者,G2的输出是否就是最高位?例如,在G1的生成中,输出是g1(end),即最高位。同理,G2的输出最高位是g2(end)吗?但是在代码中,G2的输出并不是直接取最高位,而是通过选择的抽头进行异或。这可能是一个关键点。 需要明确:在GPS C/A码生成中,G2的输出是否直接使用最高位,还是通过抽头组合?根据规范,G2的延迟是通过不同的抽头位置来实现的。所以,G2的原始序列是每个时刻移位后的状态,而G2i是选取两个抽头位置的异或结果。 因此,用户可能需要保存两个部分:G2寄存器本身的输出(即每个时刻的某个固定抽头,比如最高位),以及G2i的抽头组合后的结果。或者,用户可能混淆了G2和G2i的概念,需要进一步澄清。 但根据用户的问题,他明确提到“将G2和G2i生成的码保存在文件中”。所以需要生成两个序列:一个是G2的原始序列(可能指未延迟的),另一个是G2i的延迟后的序列。但根据代码,G2i的生成是通过抽头选择来等效延迟,而G2的原始序列可能是每个时刻的移位后的最高位?或者原始G2的输出是某个固定抽头? 这里可能存在误解。正确的做法是:G2原始序列是G2寄存器在每个码片时刻的输出(例如最高位),而G2i则是通过不同的抽头组合来模拟延迟后的G2序列。因此,为了保存G2和G2i的码,需要分别记录这两个序列。 在原代码中,g2i_code保存的是每次循环中两个抽头的异或结果,也就是G2i的输出。而G2的原始输出可能需要另外记录,例如每次循环中G2的最高位,或者其他位置。这需要根据G2的规范来确定。 例如,假设G2的输出是最高位(类似G1),那么在每个循环中,G2的输出应该是g2(end)。但原代码中,G2的反馈是计算多项式抽头后的值,然后移位,所以每次循环中,G2的最高位是移位前的第一位元素?或者,因为MATLAB数组的索引是1-based,并且移位是右移,所以原代码中的g2数组是[feedback_g2, g2(1:end-1)],即每次将反馈位放在最前面,然后右移。因此,最高位应该是g2(1)吗? 例如,初始的g2是ones(1,10),即[1 1 1 1 1 1 1 1 1 1]。当第一次循环时,feedback_g2是mod(sum(g2(g2_poly)),2),即计算抽头位置的和。然后g2变为 [feedback_g2, g2(1:9)]。所以在每次循环中,g2的各个位是向右移动的,第一位是新的反馈位,第二位是原来的第一位,以此类推。因此,最高位应该是第一个元素g2(1),而输出可能是g2(1)吗?或者不同的规范可能有不同的定义。 这可能需要查阅GPS的生成规范,确定G2的输出是如何获取的。例如,在GPS中,G2的生成多项式是x^10 +x^9 +x^8 +x^6 +x^3 +x^2 +1,其移位寄存器的输出通常是最后一个stage(stage 10)的值,还是其他?或者是否通过不同的抽头组合? 根据IS-GPS-200规范,G2的生成多项式是x^10 +x^9 +x^8 +x^6 +x^3 +x^2 +1,所以反馈抽头是第10、9、8、6、3、2级。而每个PRN对应的G2i序列是通过对G2的两个不同stage进行异或得到的,这两个stage的选择对应不同的延迟i。 因此,G2的原始序列可能指的是每个时刻移位后的stage 10的值,而G2i则是两个不同stage的异或结果。但原代码中的G2i_code(n) = mod(sum(g2(selected_taps)),2),即对两个抽头位置的值求和取模2,也就是异或操作。而用户可能希望保存G2的原始输出,即每个时刻的stage 10的值,以及G2i的抽头后的结果。 因此,在修改代码时,需要同时记录G2的每个码片的最高位(假设stage 10是最高位,即数组中的最后一个元素?或者第一个?这里可能存在混淆,因为数组的索引方向可能与移位寄存器的stage顺序相反)。 例如,原代码中的g1寄存器的输出是g1(end),即最后一个元素,这可能对应于stage 10的输出。而g2寄存器的结构是否类似?假设在代码中,g2(1)是第一个stage,g2(10)是第10个stage。因此,G2的原始输出应该是g2(10),也就是每次循环中的最后一个元素。而抽头选择可能根据这个结构来选择不同的stage。 例如,在prn_tap_table中,PRN1的抽头是2和6,即g2的第2和第6个元素进行异或。因此,在代码中,需要确认stage的编号是否与数组索引对应。比如,假设数组g2的第1个元素对应stage1,第10个对应stage10。那么,抽头的位置是按照stage编号来的,即prn_tap_table中的数字对应stage的编号。 因此,G2的原始输出如果是stage10的值,那么在代码中应该是g2(10)。而原代码中并没有生成这个原始序列,而是直接生成G2i的抽头后的结果。因此,用户需要保存G2原始序列的话,就需要在循环中记录每个时刻的g2(10)的值,以及G2i的抽头后的结果。 因此,修改代码的步骤可能包括: 1. 在生成G1和G2i的同时,生成G2的原始序列(每个码片的stage10的输出)。 2. 将G2原始序列和G2i序列保存到文件中,例如.txt或.csv格式。 3. 可能需要将二进制序列转换为字符形式,或者保存为数值数组。 另外,用户可能需要将每个码片的二进制值保存,或者转换为其他格式。例如,每行一个数值,或者直接保存为0和1的字符串。 现在,用户可能的需求是将G2和G2i的序列分别保存,以便后续分析或使用。例如,比较两者的相关性,或者作为其他算法的输入。 因此,在回答时需要修改原函数,使其能够输出G2和G2i的序列,或者创建新的函数来生成并保存这些序列。或者,可能需要在原函数中添加参数,控制是否保存到文件。 但用户请求的可能是修改后的代码,能够将G2和G2i的码保存到文件中。因此,可能需要调整函数,使其在生成C/A码的同时,生成并保存G2和G2i的序列。 例如,修改函数,使其返回ca_code,并同时输出G2和G2i的序列,或者在函数内部直接写入文件。 或者,保持原有函数不变,创建新的函数来生成并保存这些序列。但用户可能需要一个完整的解决方案,因此可能需要展示如何修改代码,添加文件保存的部分。 在MATLAB中,保存数据到文件可以使用dlmwrite、fprintf、writematrix等函数。例如,将G2和G2i的序列保存为文本文件,每行一个元素,或者用逗号分隔。 另外,考虑到每个序列都是1023位的二进制序列,可能需要将数组转换为字符类型,或者保存为数值。例如,将每个码片的0和1保存为字符,或者数值。 现在,可能的实现步骤: 1. 在生成G1和G2i的循环中,同时记录G2的原始输出(例如stage10的值)。 2. 将G2原始序列和G2i序列保存到文件中。 3. 提供示例代码,展示如何调用函数并保存数据。 但原来的函数只返回ca_code,所以可能需要修改函数的输出参数,使其返回G2和G2i的序列,或者创建一个新的函数来专门处理保存操作。 或者,在函数内部添加文件保存的代码,根据用户输入的参数决定是否保存。但为了保持函数的简洁,可能更推荐在外部处理保存。 例如,用户调用生成函数后,得到G2和G2i的序列,然后自行保存。但原来的函数并没有返回这些序列,因此需要修改函数,使其返回这些值。 因此,修改后的函数可能需要返回三个输出:ca_code, g2_code, g2i_code。或者,创建一个新的函数来生成这些序列。 不过,用户给出的原函数名为generate_ca_code_full,可能更倾向于保持其功能不变,而另外编写代码来保存G2和G2i的序列。或者,在原函数中添加可选参数来控制是否保存。 但用户的问题明确是“将G2和G2i生成的码保存在文件中”,所以需要展示如何生成这两个序列并保存。 可能的解决方案是: - 修改原来的生成函数,使其在生成过程中记录G2的原始输出和G2i的序列。 - 在函数中添加文件保存的代码,或者返回这些序列让用户自行保存。 考虑到函数的单一职责原则,可能更优的做法是将生成G2和G2i的部分分离出来,让用户可以选择保存。 因此,可能需要重构原函数,使其可以生成G1、G2原始序列和G2i序列,然后用户调用后保存到文件。 例如,修改后的函数返回g1_code, g2_code, g2i_code,然后用户可以选择保存这些变量到文件。 或者,创建一个新函数,基于原来的代码,生成并保存所需序列。 因此,可能的步骤如下: 1. 修改原函数,使其返回G2的原始序列和G2i的序列。 2. 编写代码调用该函数,获取这些序列,并将其保存到文件。 3. 展示保存的示例代码,例如使用dlmwrite或fprintf。 但原函数目前只生成ca_code,所以需要调整代码结构,使其在生成过程中记录G2的原始序列。例如,在循环中,除了计算g1_code和g2i_code之外,还记录g2的输出(比如stage10的值)。 修改后的代码可能如下: 在循环中: for n = 1:code_length % G1生成 g1_code(n) = g1(end); feedback_g1 = mod(sum(g1(g1_taps)), 2); g1 = [feedback_g1, g1(1:end-1)]; % G2生成 % 记录G2的原始输出(假设是最后一个stage,即g2(end)) g2_code(n) = g2(end); selected_taps = prn_tap_table(prn, :); g2i_code(n) = mod(sum(g2(selected_taps)), 2); feedback_g2 = mod(sum(g2(g2_poly)), 2); g2 = [feedback_g2, g2(1:end-1)]; end 这样,g2_code保存了每个时刻G2寄存器最后一个stage的值,而g2i_code是抽头后的结果。这样,用户可以将g2_code和g2i_code保存到文件中。 然后,修改函数使其返回这三个序列: function [ca_code, g1_code, g2_code, g2i_code] = generate_ca_code_full(prn) 但原函数可能不需要返回g1_code,但根据用户需求,可能只需要g2_code和g2i_code。但为了保持完整性,可能需要调整输出参数。 或者,用户可能只需要G2和G2i的序列,所以函数返回ca_code, g2_code, g2i_code。然后用户可以选择保存这些变量。 之后,用户调用函数后,使用文件写入函数保存数据: prn = 1; [ca_code, g2_code, g2i_code] = generate_ca_code_full(prn); % 保存为文本文件 dlmwrite('g2_code.txt', g2_code', 'precision', '%d'); dlmwrite('g2i_code.txt', g2i_code', 'precision', '%d'); 或者使用fprintf: fid = fopen('g2_code.txt', 'w'); fprintf(fid, '%d\n', g2_code); fclose(fid); 同理处理g2i_code。 但需要确保生成的序列是行向量,以便正确写入文件。 此外,用户可能需要将二进制序列转换为字符形式,例如'0'和'1'的字符串,或者保持数值格式。 综上,回答中需要提供修改后的代码,能够生成G2和G2i的序列,并展示如何保存到文件。同时解释每个步骤,确保用户理解如何操作。</think>以下是增强版GPS C/A码生成代码,包含G2原始序列和G2i序列的生成与文件保存功能: ```matlab function [ca_code, g2_raw, g2i_code] = generate_ca_code_with_g2(prn, save_files) % 增强版C/A码生成函数,支持G2原始序列和G2i序列保存 % 输入: % prn - 卫星号(1-37) % save_files - 是否保存文件(true/false) % 输出: % ca_code - C/A码(1x1023 logical) % g2_raw - G2原始序列(1x1023 logical) % g2i_code - G2i延迟序列(1x1023 logical) % ---------- 参数初始化 ---------- [g1_code, g2_raw, g2i_code] = deal(zeros(1,1023)); % 预分配内存 g1_reg = ones(1,10); % G1初始状态全1 g2_reg = ones(1,10); % G2初始状态全1 % ---------- 生成核心序列 ---------- for n = 1:1023 % G1寄存器更新 g1_code(n) = g1_reg(end); % 输出最高位 feedback_g1 = mod(sum(g1_reg([10,3])), 2); g1_reg = [feedback_g1, g1_reg(1:end-1)]; % G2寄存器更新(同时记录原始输出) g2_raw(n) = g2_reg(end); % 记录G2原始输出 feedback_g2 = mod(sum(g2_reg([10,9,8,6,3,2])), 2); g2_reg = [feedback_g2, g2_reg(1:end-1)]; % G2i延迟序列生成 tap = get_g2i_taps(prn); g2i_code(n) = mod(sum(g2_reg(tap)), 2); end % ---------- 生成C/A码 ---------- ca_code = mod(g1_code + g2i_code, 2); % ---------- 文件保存逻辑 ---------- if save_files save_sequence(g2_raw, sprintf('G2_RAW_PRN%d.txt', prn)); save_sequence(g2i_code, sprintf('G2i_PRN%d.txt', prn)); end end function save_sequence(seq, filename) % 序列保存辅助函数 % 格式说明:ASCII文本,每行一个码片(0/1) fid = fopen(filename, 'w'); fprintf(fid, '%d\n', seq); fclose(fid); disp(['已保存文件:' filename]); end function taps = get_g2i_taps(prn) % PRN与G2i抽头对应表(IS-GPS-200H 表3-IIa) prn_tap_table = [ 2,6; 3,7; 4,8; 5,9; 1,9; 2,10; 1,8; 2,9; 3,10; 2,3; 3,4; 5,6; 6,7; 7,8; 8,9; 9,10; 1,4; 2,5; 3,6; 4,7; 5,8; 6,9; 1,3; 4,6; 5,7; 6,8; 7,9; 8,10; 1,6; 2,7; 3,8; 4,9; 5,10; 4,10; 1,7; 2,8; 4,10 ]; taps = prn_tap_table(prn, :); end ``` --- ### **使用示例** ```matlab % 生成PRN5的序列并保存文件 [ca_code, g2_raw, g2i_code] = generate_ca_code_with_g2(5, true); % 验证文件内容(示例输出) disp('G2原始序列前10码片:'); disp(g2_raw(1:10)') disp('G2i序列前10码片:'); disp(g2i_code(1:10)') ``` --- ### **文件格式说明** 1. **G2_RAW_PRNx.txt** - 每行一个整数值(0/1) - 表示G2寄存器原始输出序列 - 示例内容: ``` 1 1 1 ...(共1023行) ``` 2. **G2i_PRNx.txt** - 每行一个整数值(0/1) - 表示经过相位延迟的G2i序列 - 文件结构与G2_RAW相同 --- ### **关键技术细节** 1. **G2原始序列定义** - 直接输出G2移位寄存器最后一级(stage10)的状态 - 数学表达式:$g2_{raw}[n] = S_{10}^{(n)}$ - 其中$S_{10}^{(n)}$表示第n个码片时刻stage10的状态 2. **相位延迟等效原理** - G2i的i码片延迟通过抽头选择实现 - 延迟关系式:$i = N_{tap2} - N_{tap1} - 2$ - 例如PRN1选择tap2=6和tap1=2时:$i = 6-2-2 = 2$(实际应用中i=5,需查表确认)* 3. **硬件对应关系** | MATLAB索引 | 寄存器级数 | 物理位置 | |------------|------------|----------| | g2_reg(1) | Stage1 | 最左端 | | g2_reg(10) | Stage10 | 最右端 | --- ### **扩展应用建议** 1. **二进制文件保存** ```matlab % 转换为uint8类型保存 fid = fopen('G2i.bin','wb'); fwrite(fid, g2i_code, 'ubit1'); fclose(fid); ``` 2. **可视化分析** ```matlab subplot(3,1,1) stem(g2_raw(1:50), 'Marker','none'), title('G2原始序列') subplot(3,1,2) stem(g2i_code(1:50), 'Marker','none'), title('G2i延迟序列') subplot(3,1,3) stem(xcorr(g2_raw, g2i_code, 10), 'filled'), title('互相关函数') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值